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This Tool Is Not Just an Editor 

This software is a full Z-Machine development toolchain: 

Editor → Compiler → Z-Machine Story File → Interpreter → Player 

You are building real 1980s-compatible interactive fiction that runs on: 

• Original CP/M systems 

• NABU PC 

• Apple II, Commodore 64 (via emulators) 

• DOS (DOSBox) 

• Modern Windows, Linux, macOS (Frotz, etc.) 

This is not an emulator. 
This is authoring original Z-Machine software, a recreation of the platform used by 
Infocom. 
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2. What Is the Z-Machine? (Expanded) 

The Z-Machine is a portable virtual CPU created by Infocom in 1979. 
It defines: 

• Memory layout 

• Instruction set 

• Object model 

• Dictionary 

• Text encoding (ZSCII) 

• Input parsing rules 

• Save/restore format 

Infocom compiled all of their games into Z-Machine bytecode, then wrote interpreters for: 

• Apple II 



• C64 

• IBM PC 

• CP/M (MSX, Coleco Adam, NABU, IBM PC, etc…) 

• Amiga 

• Atari ST 

• TRS-80 

This is one of the earliest examples of: 

Write once, run anywhere 

…predating Java or .Net by almost 20 years. 

Your editor generates a real Z-Machine V3 story file. 
Nothing custom. Nothing proprietary. 
This means your games will still run decades from now on any Z-Machine interpreter. 

 

3. A Brief History of Infocom & the Z-Machine (Expanded) 

Origins (1977–1979) 

Zork began as a PDP-10 mainframe game written in MDL (a Lisp-like language) at MIT. 
Infocom formed specifically to commercialize it. 

Problem: 
Every home computer was different. 

Solution: 
They invented the Z-Machine. 

Instead of porting games, they ported the interpreter. 

 

Why This Was Revolutionary 

Before Infocom: 

• Each game had to be rewritten per platform. 

After Infocom: 



• One compiled story file ran everywhere. 

This enabled: 

• Faster development 

• Identical gameplay across platforms 

• Easier bug fixes 

• Smaller teams 

• Faster releases 

Modern engines (Unity, JVM, WASM) all follow this same idea. 

 

Z-Machine Versions 

Version Era Notes 

V1–V2 Very early Rare, experimental 

V3 1982–1987 Most Infocom titles 

V4–V5 Later Larger memory 

V6 Graphics/sound Rarely supported 

V7–V8 Large stories Modern IF 

This editor targets V3 because: 

• Works on CP/M with a primary focus on NABU PC and Cloud CPM 

• Small memory footprint 

• Maximum compatibility 

• Historically authentic 

 

4. Z-Machine Files (.DAT, .Z3, etc.) (Expanded) 

Infocom did not standardize file extensions. 



Extension Meaning 

.z3 Z-Machine Version 3 

.dat Often renamed .z3 

.z5 Version 5 

.z8 Version 8 

Under the hood: 

• .dat and .z3 are identical formats 

• Interpreters detect version from header 

• The extension is cosmetic 

Your editor produces: 

story.z3 

Both work identically. 

 

9. How the Game Engine Thinks (Deeper Mental Model) 

Internally the Z-Machine works like a tiny OS: 

Input → Tokenizer → Dictionary → Parser → Action → State Change → Output 

Step-by-step example: 

Command: 

use rusty key on door 

Parser flow: 

1. Normalize: 

o use → verb 

o rusty → adjective 

o key → noun 

o door → second noun 



2. Dictionary lookup: 

o key → item ID 

o door → object ID 

3. Rule matching: 

o Does room contain door? 

o Is key in inventory? 

o Is door locked? 

4. Script execution: 

o If player_has(key) && door_locked 

o Unlock door 

o Print message 

5. State update: 

o door.locked = false 

6. Output: 

o "The rusty key turns and the door creaks open." 

 

14. Scripting & Conditions (Deep Dive) 

Your editor provides a high-level scripting layer that compiles into Z-Machine bytecode. 
You do not write Z-assembly. 
You write game logic. 

Core Concepts 

Concept Meaning 

player_has(item) Item is in inventory 

in_room(roomId) Player location 

flag_set(flag) Boolean state 



Concept Meaning 

item_in_room(item, room) Spatial logic 

item_used_on(a, b) Contextual action 

 

Example: Locked Door 

IF player_has(key) AND in_room(cabin) 

  set_flag(door_unlocked) 

  print "You unlock the door." 

  enable_exit(north) 

ELSE 

  print "The door is locked." 

Example: Conditional Description 

IF flag_set(power_on) 

  print "The computer hums softly." 

ELSE 

  print "The computer is dark and lifeless." 

Example: Multi-Step Puzzle 

IF player_has(wire) AND player_has(battery) AND in_room(generator) 

  set_flag(generator_fixed) 

  print "The generator sputters to life." 

ELSE 

  print "You’re missing something." 

 

15. Writing Responses & Conditional Logic (Expanded) 

Good IF games teach players how to think. 



Bad: 

Nothing happens. 

Better: 

You can’t open the door with your hands. It looks like it needs a key. 

Great: 

You rattle the handle. The lock is old and rusted. A key might work. 

Design rule: 

• Every failure should hint at success 

• Every puzzle should teach the mechanic 

• Never leave players guessing what verbs exist 

 

16. Step-By-Step: Making Your First Adventure (Expanded) 

Example Game: “The Last Cabin” 

Rooms: 

• Cabin 

• Forest 

• Basement 

Items: 

• Key 

• Lantern 

• Battery 

Verbs: 

• unlock 

• use 

• climb 

• search 



Puzzles: 

• Find lantern 

• Add battery 

• Light basement 

• Find key 

• Unlock door 

This creates: 

• Exploration 

• Item dependency 

• Environmental storytelling 

• Multi-step progression 

 

21. Advanced Design Tips (Expanded) 

Don’t Soft-Lock the Player 

Bad: 

• Drop key into pit 

• No way to retrieve 

Good: 

• Allow retrieval 

• Or reset puzzle 

 

Layered Puzzle Design 

Layer Example 

Discovery Player sees locked door 

Preparation Finds key 



Layer Example 

Execution Uses key 

Consequence New area opens 

 

Environmental Storytelling 

Instead of: 

There is a dead body. 

Use: 

The skeleton still clutches a rusted lantern. Scratch marks cover the stone floor. 

 

22. Debugging & Testing (Expanded) 

Test these cases: 

• Random gibberish input 

• Partial commands 

• Verb-only commands 

• Noun-only commands 

• Commands in wrong room 

• Repeated commands 

• Save → quit → load → continue 

• Try to break puzzles intentionally 

Pro tip: 
Play your game like a troll. 
Try to ruin it. 

 

23. Versioning, Compatibility & Limits (Expanded) 

Z-Machine V3 constraints: 



Feature Practical Limit 

Rooms ~255 

Objects ~255 

Flags ~64 

Memory ~128 KB 

Text Compressed 

This is perfect for: 

• Mystery games 

• Horror 

• Puzzles 

• Detective stories 

• Small RPGs 

• Educational adventures 

 

24. Example Game Types You Can Create 

                     Detective Noir 

• Interrogate NPCs 

• Gather clues 

• Piece together evidence 

🏚 Survival Horror 

• Explore haunted house 

• Limited light 

• Locked doors 

• Hidden notes 

           Sci-Fi Exploration 



• Crashed ship 

• Repair systems 

• Restore power 

• Escape planet 

           Fantasy Dungeon 

• Keys 

• Potions 

• Traps 

• Secret rooms 

       Educational Games 

• History adventure 

• Language learning 

• Programming puzzles 

 

25. FAQ (Expanded) 

    Is this reverse engineering Infocom? 
No. The Z-Machine spec is public. This is a clean-room implementation. 

    Can I make my own interpreter? 
Yes. The format is documented. 

    Will these games still run in 20 years? 
Yes. Z-Machine interpreters are stable and widely implemented. 

    Can I export to other formats later? 
Yes. Your .zproj.json is future-proof source code. 

 

Final Thought 

You’re not just building a game editor. 
You’re reviving a lost creative platform. 



This lets modern creators ship software for: 

• 8-bit computers 

• Vintage operating systems 

• Emulators 

• Future machines 

That’s insanely cool. 


