Complete Z-Machine Editor User Manual

Z-Machine Infogames Text Adventure Creator

by DJ Sures
Manual Version: 2026.02.08.00

This Tool Is Not Just an Editor
This software is a full Z-Machine development toolchain:
Editor » Compiler » Z-Machine Story File - Interpreter > Player
You are building real 1980s-compatible interactive fiction that runs on:
e Original CP/M systems
e NABUPC
e Applell, Commodore 64 (via emulators)
e DOS (DOSBox)
e Modern Windows, Linux, macOS (Frotz, etc.)

This is not an emulator.
This is authoring original Z-Machine software, a recreation of the platform used by
Infocom.



Table of Contents

1. Introduction

1.1 What Is This Software?
1.2 Who This Tool Is For
1.3 What You Can Create

2. The Z-Machine Explained
2.1 What Is the Z-Machine?

2.2 Why the Z-Machine Exists
2.3 How Interpreters Work

2.4 Z-Machine Versions (V1-V8)
2.5 Why This Editor Targets V3

3. History of Infocom & Interactive Fiction
3.1 The Birth of Zork

3.2 The Creation of Infocom

3.3 The Z-Machine Virtual Computer

3.4 Why Infocom’s Architecture Still Matters
3.5 Famous Infocom Games

4. Story File Formats (.DAT, .Z3, .Z5, .Z8)
4.1 What a Story File Is

4.2 File Extensions Explained

4.3 Compatibility with Interpreters

4.4 Why .DAT and .Z3 Are the Same

4.5 Choosing the Right Format

5. How This Editor Works (Big Picture)
5.1 The Toolchain Pipeline

5.2 Project » Compiler > Story File

5.3 What Happens During Compile

5.4 What the Compiler Generates

5.5 How Interpreters Execute Your Game

6. Installing & Running the Editor
6.1 System Requirements

6.2 First Launch

6.3 Creating a New Project

6.4 Opening an Existing Project
6.5 Updating the Editor



7. Project Files (.zproj.json)

7.1 Project Structure

7.2 Manual Editing

7.3 Version Control (Git-Friendly)
7.4 Backups & Recovery

7.5 Project Portability

8. The Main Interface

8.1 Project Settings

8.2 Rooms Panel

8.3 Iltems Panel

8.4 Verbs Panel

8.5 Build & Compile Panel
8.6 Story Inspector

9. How the Game Engine Thinks
9.1 Input Parsing Pipeline

9.2 Dictionary & Tokenization

9.3 Verb Resolution

9.4 Noun Resolution

9.5 Action Dispatch

9.6 State Updates

10. Rooms (Locations)

10.1 Creating Rooms

10.2 Room IDs & Names

10.3 Room Descriptions

10.4 Exits & Navigation

10.5 Room-Based Conditions
10.6 Conditional Descriptions

11. ltems (Objects)

11.1 Creating ltems

11.2 Takeable vs Fixed Objects
11.3 Inventory

11.4 Hidden ltems

11.5 Item States

11.6 Object-Based Conditions



12. Verbs (Actions & Commands)
12.1 Defining Verbs

12.2 Synonyms

12.3 Default Responses

12.4 Verb Overrides

12.5 Contextual Verbs

12.6 Verb Conflicts

13. Dictionary & Parsing

13.1 Tokenization

13.2 ZSCIl Encoding

13.3 Dictionary Limits

13.4 Handling Unknown Words
13.5 Debugging Parser Errors

14. Scripting & Conditions
14.1 How Scripts Work

14.2 Conditions

14.3 Flags & State

14.4 Multi-Step Puzzles

14.5 Context-Sensitive Actions
14.6 Reusable Logic Patterns

15. Writing Responses & Game Logic
15.1 Player Feedback

15.2 Failure States

15.3 Hinting Without Spoiling

15.4 Branching Narratives

15.5 State-Dependent Text

16. Tutorial: Your First Adventure Game
16.1 Creating the Project

16.2 Designing Rooms

16.3 Adding Items

16.4 Creating Verbs

16.5 Writing Your First Puzzle

16.6 Compiling & Running

17. Editing Existing Story Files
17.1 What You Can Inspect



17.2 Why You Can’t Edit Compiled Files
17.3 Extracting Dictionaries

17.4 Reverse Inspection

17.5 Migrating Old Games

18. Running Your Game

18.1 Using the Built-In Interpreter
18.2 Running in Frotz

18.3 Running on CP/M

18.4 Running on NABU PC

18.5 Distribution Testing

19. Exporting & Inspecting
19.1 Dictionary Export

19.2 Header Inspection

19.3 Object Table Inspection
19.4 Checksum Verification
19.5 Debug Views

20. Common Mistakes & Pitfalls
20.1 Broken Room Links

20.2 Missing Items

20.3 Parser Conflicts

20.4 Soft-Locking the Player

20.5 Debugging “Nothing Happens”

21. Advanced Design Techniques
21.1 Puzzle Design Patterns

21.2 Narrative Structure

21.3 Environmental Storytelling
21.4 Player Guidance

21.5 Replayability

22. Debugging & Testing Strategies
22.1 Playtesting Techniques

22.2 Troll Testing

22.3 Save/Load Testing

22.4 Edge Case Testing

22.5 Regression Testing



23. Versioning, Compatibility & Limits
23.1 Z-Machine V3 Limits

23.2 Memory Constraints

23.3 Object Limits

23.4 Performance Considerations

23.5 Forward Compatibility

24. Publishing Your Game
24.1 Packaging for Players
24.2 Including Interpreters
24.3 CP/M Distribution

24.4 Web Distribution

24.5 Archiving & Preservation

25. FAQ & Troubleshooting
25.1 Common Questions
25.2 Compatibility Issues
25.3 Performance Problems
25.4 Save File Issues

25.5 Reporting Bugs

2. What Is the Z-Machine? (Expanded)

The Z-Machine is a portable virtual CPU created by Infocom in 1979.
It defines:

¢ Memory layout
¢ Instruction set
e Object model
e Dictionary
e Textencoding (ZSCII)
e Input parsing rules
e Save/restore format
Infocom compiled all of their games into Z-Machine bytecode, then wrote interpreters for:

e Applell



« C64
e IBMPC

e CP/M(MSX, Coleco Adam, NABU, IBM PC, etc...)

e Amiga
e Atari ST
e TRS-80

This is one of the earliest examples of:
Write once, run anywhere
...predating Java or .Net by almost 20 years.

Your editor generates a real Z-Machine V3 story file.
Nothing custom. Nothing proprietary.
This means your games will still run decades from now on any Z-Machine interpreter.

3. A Brief History of Infocom & the Z-Machine (Expanded)
Origins (1977-1979)

Zork began as a PDP-10 mainframe game written in MDL (a Lisp-like language) at MIT.
Infocom formed specifically to commercialize it.

Problem:
Every home computer was different.

Solution:
They invented the Z-Machine.

Instead of porting games, they ported the interpreter.

Why This Was Revolutionary
Before Infocom:
e Each game had to be rewritten per platform.

After Infocom:



e One compiled story file ran everywhere.
This enabled:

e Faster development

¢ ldentical gameplay across platforms

o Easier bug fixes

e Smaller teams

o Fasterreleases

Modern engines (Unity, JVM, WASM) all follow this same idea.

Z-Machine Versions

Version Era Notes

V1-V2 Veryearly Rare, experimental
V3 1982-1987 Most Infocom titles
V4-V5 Later Larger memory

V6 Graphics/sound Rarely supported

V7-V8 Large stories Modern IF

This editor targets V3 because:
e Works on CP/M with a primary focus on NABU PC and Cloud CPM
e Small memory footprint
e Maximum compatibility

e Historically authentic

4. Z-Machine Files (.DAT, .Z3, etc.) (Expanded)

Infocom did not standardize file extensions.



Extension Meaning

.z3 Z-Machine Version 3
.dat Often renamed .z3
.25 Version 5

.z8 Version 8

Under the hood:

e .datand.z3 are identical formats
e Interpreters detect version from header
e The extension is cosmetic

Your editor produces:

story.z3

Both work identically.

9. How the Game Engine Thinks (Deeper Mental Model)
Internally the Z-Machine works like a tiny OS:
Input > Tokenizer > Dictionary > Parser > Action > State Change > Output
Step-by-step example:
Command:
use rusty key on door
Parser flow:
1. Normalize:

o use->verb

o rusty- adjective

o key->noun

o door~> second noun



2. Dictionary lookup:
o key->itemID
o door~ objectID
3. Rule matching:
o Doesroom contain door?
o Iskeyininventory?
o Isdoorlocked?
4. Script execution:
o If player_has(key) && door_locked
o Unlock door
o Print message
5. State update:
o door.locked = false
6. Output:

o "The rusty key turns and the door creaks open."

14. Scripting & Conditions (Deep Dive)

Your editor provides a high-level scripting layer that compiles into Z-Machine bytecode.
You do not write Z-assembly.
You write game logic.

Core Concepts

Concept Meaning
player_has(item) I[tem is in inventory
in_room(roomld) Player location

flag_set(flag) Boolean state



Concept Meaning
item_in_room(item, room) Spatial logic

item_used_on(a, b) Contextual action

Example: Locked Door
IF player_has(key) AND in_room(cabin)
set_flag(door_unlocked)
print "You unlock the door."
enable_exit(north)
ELSE
print "The door is locked."
Example: Conditional Description
IF flag_set(power_on)
print "The computer hums softly."
ELSE
print "The computer is dark and lifeless."
Example: Multi-Step Puzzle
IF player_has(wire) AND player_has(battery) AND in_room(generator)
set_flag(generator_fixed)
print "The generator sputters to life."
ELSE

print "You’re missing something."

15. Writing Responses & Conditional Logic (Expanded)

Good IF games teach players how to think.



Bad:
Nothing happens.
Better:
You can’t open the door with your hands. It looks like it needs a key.
Great:
You rattle the handle. The lock is old and rusted. A key might work.
Design rule:
e Everyfailure should hint at success
¢ Every puzzle should teach the mechanic

¢ Never leave players guessing what verbs exist

16. Step-By-Step: Making Your First Adventure (Expanded)

Example Game: “The Last Cabin”

Rooms:
e Cabin
e Forest

e Basement

ltems:
e Key
e Lantern
e Battery
Verbs:
e unlock
e use
e climb

e search



Puzzles:
o Find lantern
e Add battery
e Lightbasement
e Find key
¢ Unlock door
This creates:
e Exploration
e Item dependency
¢ Environmental storytelling

e Multi-step progression

21. Advanced Design Tips (Expanded)
Don’t Soft-Lock the Player
Bad:
e Drop key into pit
¢ No way to retrieve
Good:
o Allow retrieval

e Orreset puzzle

Layered Puzzle Design
Layer Example
Discovery Player sees locked door

Preparation Finds key



Layer Example
Execution Uses key

Consequence New area opens

Environmental Storytelling
Instead of:

There is a dead body.

Use:

The skeleton still clutches a rusted lantern. Scratch marks cover the stone floor.

22. Debugging & Testing (Expanded)
Test these cases:

e Random gibberish input

e Partial commands

e Verb-only commands

e Noun-only commands

e Commands inwrong room

¢ Repeated commands

e Save » quit > load » continue

e Tryto break puzzles intentionally

Pro tip:
Play your game like a troll.
Try to ruin it.

23. Versioning, Compatibility & Limits (Expanded)

Z-Machine V3 constraints:



Feature Practical Limit
Rooms ~255
Objects ~255
Flags ~64
Memory ~128 KB
Text Compressed
This is perfect for:
¢ Mystery games
e Horror
o Puzzles
o Detective stories

e Small RPGs

e Educational adventures

24. Example Game Types You Can Create

& Detective Noir
¢ Interrogate NPCs
e Gatherclues

e Piecetogether evidence

@& Survival Horror
e Explore haunted house
e Limited light
o Lockeddoors

e Hidden notes

g Sci-Fi Exploration



e Crashed ship
¢ Repair systems
e Restore power

e Escape planet

ﬁ Fantasy Dungeon

e Keys
e Potions
e Traps

e Secretrooms

@ Educational Games
e History adventure
e Language learning

e Programming puzzles

25. FAQ (Expanded)

? Is this reverse engineering Infocom?
No. The Z-Machine spec is public. This is a clean-room implementation.

? Can | make my own interpreter?
Yes. The format is documented.

? Will these games still run in 20 years?
Yes. Z-Machine interpreters are stable and widely implemented.

? Can | export to other formats later?
Yes. Your .zproj.json is future-proof source code.

Final Thought

You’re not just building a game editor.
You’re reviving a lost creative platform.



This lets modern creators ship software for:
e 8-bitcomputers
¢ Vintage operating systems
e Emulators
e Future machines

That’s insanely cool.



