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This Tool Is Not Just an Editor
This software is a full Z-Machine development toolchain:
Editor » Compiler » Z-Machine Story File - Interpreter > Player
You are building real 1980s-compatible interactive fiction that runs on:
e Original CP/M systems
e NABUPC
e Applell, Commodore 64 (via emulators)
e DOS (DOSBox)
e Modern Windows, Linux, macOS (Frotz, etc.)

This is not an emulator.
This is authoring original Z-Machine software, a recreation of the platform used by
Infocom.
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2. What Is the Z-Machine? (Expanded)

The Z-Machine is a portable virtual CPU created by Infocom in 1979.
It defines:

¢ Memory layout
¢ Instruction set
e Object model
e Dictionary
e Textencoding (ZSCII)
e Input parsing rules
e Save/restore format
Infocom compiled all of their games into Z-Machine bytecode, then wrote interpreters for:

e Applell



« C64
e IBMPC

e CP/M(MSX, Coleco Adam, NABU, IBM PC, etc...)

e Amiga
e Atari ST
e TRS-80

This is one of the earliest examples of:
Write once, run anywhere
...predating Java or .Net by almost 20 years.

Your editor generates a real Z-Machine V3 story file.
Nothing custom. Nothing proprietary.
This means your games will still run decades from now on any Z-Machine interpreter.

3. A Brief History of Infocom & the Z-Machine (Expanded)
Origins (1977-1979)

Zork began as a PDP-10 mainframe game written in MDL (a Lisp-like language) at MIT.
Infocom formed specifically to commercialize it.

Problem:
Every home computer was different.

Solution:
They invented the Z-Machine.

Instead of porting games, they ported the interpreter.

Why This Was Revolutionary
Before Infocom:
e Each game had to be rewritten per platform.

After Infocom:



e One compiled story file ran everywhere.
This enabled:

e Faster development

¢ ldentical gameplay across platforms

o Easier bug fixes

e Smaller teams

o Fasterreleases

Modern engines (Unity, JVM, WASM) all follow this same idea.

Z-Machine Versions

Version Era Notes

V1-V2 Veryearly Rare, experimental
V3 1982-1987 Most Infocom titles
V4-V5 Later Larger memory

V6 Graphics/sound Rarely supported

V7-V8 Large stories Modern IF

This editor targets V3 because:
e Works on CP/M with a primary focus on NABU PC and Cloud CPM
e Small memory footprint
e Maximum compatibility

e Historically authentic

4. Z-Machine Files (.DAT, .Z3, etc.) (Expanded)

Infocom did not standardize file extensions.



Extension Meaning

.z3 Z-Machine Version 3
.dat Often renamed .z3
.25 Version 5

.z8 Version 8

Under the hood:

e .datand.z3 are identical formats
e Interpreters detect version from header
e The extension is cosmetic

Your editor produces:

story.z3

Both work identically.

9. How the Game Engine Thinks (Deeper Mental Model)
Internally the Z-Machine works like a tiny OS:
Input > Tokenizer > Dictionary > Parser > Action > State Change > Output
Step-by-step example:
Command:
use rusty key on door
Parser flow:
1. Normalize:

o use->verb

o rusty- adjective

o key->noun

o door~> second noun



2. Dictionary lookup:
o key->itemID
o door~ objectID
3. Rule matching:
o Doesroom contain door?
o Iskeyininventory?
o Isdoorlocked?
4. Script execution:
o If player_has(key) && door_locked
o Unlock door
o Print message
5. State update:
o door.locked = false
6. Output:

o "The rusty key turns and the door creaks open."

14. Scripting & Conditions (Deep Dive)

Your editor provides a high-level scripting layer that compiles into Z-Machine bytecode.
You do not write Z-assembly.
You write game logic.

Core Concepts

Concept Meaning
player_has(item) I[tem is in inventory
in_room(roomld) Player location

flag_set(flag) Boolean state



Concept Meaning
item_in_room(item, room) Spatial logic

item_used_on(a, b) Contextual action

Example: Locked Door
IF player_has(key) AND in_room(cabin)
set_flag(door_unlocked)
print "You unlock the door."
enable_exit(north)
ELSE
print "The door is locked."
Example: Conditional Description
IF flag_set(power_on)
print "The computer hums softly."
ELSE
print "The computer is dark and lifeless."
Example: Multi-Step Puzzle
IF player_has(wire) AND player_has(battery) AND in_room(generator)
set_flag(generator_fixed)
print "The generator sputters to life."
ELSE

print "You’re missing something."

15. Writing Responses & Conditional Logic (Expanded)

Good IF games teach players how to think.



Bad:
Nothing happens.
Better:
You can’t open the door with your hands. It looks like it needs a key.
Great:
You rattle the handle. The lock is old and rusted. A key might work.
Design rule:
e Everyfailure should hint at success
¢ Every puzzle should teach the mechanic

¢ Never leave players guessing what verbs exist

16. Step-By-Step: Making Your First Adventure (Expanded)

Example Game: “The Last Cabin”

Rooms:
e Cabin
e Forest

e Basement

ltems:
e Key
e Lantern
e Battery
Verbs:
e unlock
e use
e climb

e search



Puzzles:
o Find lantern
e Add battery
e Lightbasement
e Find key
¢ Unlock door
This creates:
e Exploration
e Item dependency
¢ Environmental storytelling

e Multi-step progression

21. Advanced Design Tips (Expanded)
Don’t Soft-Lock the Player
Bad:
e Drop key into pit
¢ No way to retrieve
Good:
o Allow retrieval

e Orreset puzzle

Layered Puzzle Design
Layer Example
Discovery Player sees locked door

Preparation Finds key



Layer Example
Execution Uses key

Consequence New area opens

Environmental Storytelling
Instead of:

There is a dead body.

Use:

The skeleton still clutches a rusted lantern. Scratch marks cover the stone floor.

22. Debugging & Testing (Expanded)
Test these cases:

e Random gibberish input

e Partial commands

e Verb-only commands

e Noun-only commands

e Commands inwrong room

¢ Repeated commands

e Save » quit > load » continue

e Tryto break puzzles intentionally

Pro tip:
Play your game like a troll.
Try to ruin it.

23. Versioning, Compatibility & Limits (Expanded)

Z-Machine V3 constraints:



Feature Practical Limit
Rooms ~255
Objects ~255
Flags ~64
Memory ~128 KB
Text Compressed
This is perfect for:
¢ Mystery games
e Horror
o Puzzles
o Detective stories

e Small RPGs

e Educational adventures

24. Example Game Types You Can Create

& Detective Noir
¢ Interrogate NPCs
e Gatherclues

e Piecetogether evidence

@& Survival Horror
e Explore haunted house
e Limited light
o Lockeddoors

e Hidden notes

g Sci-Fi Exploration



e Crashed ship
¢ Repair systems
e Restore power

e Escape planet

ﬁ Fantasy Dungeon

e Keys
e Potions
e Traps

e Secretrooms

@ Educational Games
e History adventure
e Language learning

e Programming puzzles

25. FAQ (Expanded)

? Is this reverse engineering Infocom?
No. The Z-Machine spec is public. This is a clean-room implementation.

? Can | make my own interpreter?
Yes. The format is documented.

? Will these games still run in 20 years?
Yes. Z-Machine interpreters are stable and widely implemented.

? Can | export to other formats later?
Yes. Your .zproj.json is future-proof source code.

Final Thought

You’re not just building a game editor.
You’re reviving a lost creative platform.



This lets modern creators ship software for:
e 8-bitcomputers
¢ Vintage operating systems
e Emulators
e Future machines

That’s insanely cool.



