
Complete Z-Machine Editor User Manual

Z-Machine Infogames Text Adventure Creator

by DJ Sures
Manual Version: 2026.02.08.00

This Tool Is Not Just an Editor

This software is a full Z-Machine development toolchain:

Editor → Compiler → Z-Machine Story File → Interpreter → Player

You are building real 1980s-compatible interactive fiction that runs on:

• Original CP/M systems

• NABU PC

• Apple II, Commodore 64 (via emulators)

• DOS (DOSBox)

• Modern Windows, Linux, macOS (Frotz, etc.)

This is not an emulator.
This is authoring original Z-Machine software, a recreation of the platform used by
Infocom.

Table of Contents
1. Introduction
1.1 What Is This Software?
1.2 Who This Tool Is For
1.3 What You Can Create

2. The Z-Machine Explained
2.1 What Is the Z-Machine?
2.2 Why the Z-Machine Exists
2.3 How Interpreters Work
2.4 Z-Machine Versions (V1–V8)
2.5 Why This Editor Targets V3

3. History of Infocom & Interactive Fiction
3.1 The Birth of Zork
3.2 The Creation of Infocom
3.3 The Z-Machine Virtual Computer
3.4 Why Infocom’s Architecture Still Matters
3.5 Famous Infocom Games

4. Story File Formats (.DAT, .Z3, .Z5, .Z8)
4.1 What a Story File Is
4.2 File Extensions Explained
4.3 Compatibility with Interpreters
4.4 Why .DAT and .Z3 Are the Same
4.5 Choosing the Right Format

5. How This Editor Works (Big Picture)
5.1 The Toolchain Pipeline
5.2 Project → Compiler → Story File
5.3 What Happens During Compile
5.4 What the Compiler Generates
5.5 How Interpreters Execute Your Game

6. Installing & Running the Editor
6.1 System Requirements
6.2 First Launch
6.3 Creating a New Project
6.4 Opening an Existing Project
6.5 Updating the Editor

7. Project Files (.zproj.json)
7.1 Project Structure
7.2 Manual Editing
7.3 Version Control (Git-Friendly)
7.4 Backups & Recovery
7.5 Project Portability

8. The Main Interface
8.1 Project Settings
8.2 Rooms Panel
8.3 Items Panel
8.4 Verbs Panel
8.5 Build & Compile Panel
8.6 Story Inspector

9. How the Game Engine Thinks
9.1 Input Parsing Pipeline
9.2 Dictionary & Tokenization
9.3 Verb Resolution
9.4 Noun Resolution
9.5 Action Dispatch
9.6 State Updates

10. Rooms (Locations)
10.1 Creating Rooms
10.2 Room IDs & Names
10.3 Room Descriptions
10.4 Exits & Navigation
10.5 Room-Based Conditions
10.6 Conditional Descriptions

11. Items (Objects)
11.1 Creating Items
11.2 Takeable vs Fixed Objects
11.3 Inventory
11.4 Hidden Items
11.5 Item States
11.6 Object-Based Conditions

12. Verbs (Actions & Commands)
12.1 Defining Verbs
12.2 Synonyms
12.3 Default Responses
12.4 Verb Overrides
12.5 Contextual Verbs
12.6 Verb Conflicts

13. Dictionary & Parsing
13.1 Tokenization
13.2 ZSCII Encoding
13.3 Dictionary Limits
13.4 Handling Unknown Words
13.5 Debugging Parser Errors

14. Scripting & Conditions
14.1 How Scripts Work
14.2 Conditions
14.3 Flags & State
14.4 Multi-Step Puzzles
14.5 Context-Sensitive Actions
14.6 Reusable Logic Patterns

15. Writing Responses & Game Logic
15.1 Player Feedback
15.2 Failure States
15.3 Hinting Without Spoiling
15.4 Branching Narratives
15.5 State-Dependent Text

16. Tutorial: Your First Adventure Game
16.1 Creating the Project
16.2 Designing Rooms
16.3 Adding Items
16.4 Creating Verbs
16.5 Writing Your First Puzzle
16.6 Compiling & Running

17. Editing Existing Story Files
17.1 What You Can Inspect

17.2 Why You Can’t Edit Compiled Files
17.3 Extracting Dictionaries
17.4 Reverse Inspection
17.5 Migrating Old Games

18. Running Your Game
18.1 Using the Built-In Interpreter
18.2 Running in Frotz
18.3 Running on CP/M
18.4 Running on NABU PC
18.5 Distribution Testing

19. Exporting & Inspecting
19.1 Dictionary Export
19.2 Header Inspection
19.3 Object Table Inspection
19.4 Checksum Verification
19.5 Debug Views

20. Common Mistakes & Pitfalls
20.1 Broken Room Links
20.2 Missing Items
20.3 Parser Conflicts
20.4 Soft-Locking the Player
20.5 Debugging “Nothing Happens”

21. Advanced Design Techniques
21.1 Puzzle Design Patterns
21.2 Narrative Structure
21.3 Environmental Storytelling
21.4 Player Guidance
21.5 Replayability

22. Debugging & Testing Strategies
22.1 Playtesting Techniques
22.2 Troll Testing
22.3 Save/Load Testing
22.4 Edge Case Testing
22.5 Regression Testing

23. Versioning, Compatibility & Limits
23.1 Z-Machine V3 Limits
23.2 Memory Constraints
23.3 Object Limits
23.4 Performance Considerations
23.5 Forward Compatibility

24. Publishing Your Game
24.1 Packaging for Players
24.2 Including Interpreters
24.3 CP/M Distribution
24.4 Web Distribution
24.5 Archiving & Preservation

25. FAQ & Troubleshooting
25.1 Common Questions
25.2 Compatibility Issues
25.3 Performance Problems
25.4 Save File Issues
25.5 Reporting Bugs

2. What Is the Z-Machine? (Expanded)

The Z-Machine is a portable virtual CPU created by Infocom in 1979.
It defines:

• Memory layout

• Instruction set

• Object model

• Dictionary

• Text encoding (ZSCII)

• Input parsing rules

• Save/restore format

Infocom compiled all of their games into Z-Machine bytecode, then wrote interpreters for:

• Apple II

• C64

• IBM PC

• CP/M (MSX, Coleco Adam, NABU, IBM PC, etc…)

• Amiga

• Atari ST

• TRS-80

This is one of the earliest examples of:

Write once, run anywhere

…predating Java or .Net by almost 20 years.

Your editor generates a real Z-Machine V3 story file.
Nothing custom. Nothing proprietary.
This means your games will still run decades from now on any Z-Machine interpreter.

3. A Brief History of Infocom & the Z-Machine (Expanded)

Origins (1977–1979)

Zork began as a PDP-10 mainframe game written in MDL (a Lisp-like language) at MIT.
Infocom formed specifically to commercialize it.

Problem:
Every home computer was different.

Solution:
They invented the Z-Machine.

Instead of porting games, they ported the interpreter.

Why This Was Revolutionary

Before Infocom:

• Each game had to be rewritten per platform.

After Infocom:

• One compiled story file ran everywhere.

This enabled:

• Faster development

• Identical gameplay across platforms

• Easier bug fixes

• Smaller teams

• Faster releases

Modern engines (Unity, JVM, WASM) all follow this same idea.

Z-Machine Versions

Version Era Notes

V1–V2 Very early Rare, experimental

V3 1982–1987 Most Infocom titles

V4–V5 Later Larger memory

V6 Graphics/sound Rarely supported

V7–V8 Large stories Modern IF

This editor targets V3 because:

• Works on CP/M with a primary focus on NABU PC and Cloud CPM

• Small memory footprint

• Maximum compatibility

• Historically authentic

4. Z-Machine Files (.DAT, .Z3, etc.) (Expanded)

Infocom did not standardize file extensions.

Extension Meaning

.z3 Z-Machine Version 3

.dat Often renamed .z3

.z5 Version 5

.z8 Version 8

Under the hood:

• .dat and .z3 are identical formats

• Interpreters detect version from header

• The extension is cosmetic

Your editor produces:

story.z3

Both work identically.

9. How the Game Engine Thinks (Deeper Mental Model)

Internally the Z-Machine works like a tiny OS:

Input → Tokenizer → Dictionary → Parser → Action → State Change → Output

Step-by-step example:

Command:

use rusty key on door

Parser flow:

1. Normalize:

o use → verb

o rusty → adjective

o key → noun

o door → second noun

2. Dictionary lookup:

o key → item ID

o door → object ID

3. Rule matching:

o Does room contain door?

o Is key in inventory?

o Is door locked?

4. Script execution:

o If player_has(key) && door_locked

o Unlock door

o Print message

5. State update:

o door.locked = false

6. Output:

o "The rusty key turns and the door creaks open."

14. Scripting & Conditions (Deep Dive)

Your editor provides a high-level scripting layer that compiles into Z-Machine bytecode.
You do not write Z-assembly.
You write game logic.

Core Concepts

Concept Meaning

player_has(item) Item is in inventory

in_room(roomId) Player location

flag_set(flag) Boolean state

Concept Meaning

item_in_room(item, room) Spatial logic

item_used_on(a, b) Contextual action

Example: Locked Door

IF player_has(key) AND in_room(cabin)

 set_flag(door_unlocked)

 print "You unlock the door."

 enable_exit(north)

ELSE

 print "The door is locked."

Example: Conditional Description

IF flag_set(power_on)

 print "The computer hums softly."

ELSE

 print "The computer is dark and lifeless."

Example: Multi-Step Puzzle

IF player_has(wire) AND player_has(battery) AND in_room(generator)

 set_flag(generator_fixed)

 print "The generator sputters to life."

ELSE

 print "You’re missing something."

15. Writing Responses & Conditional Logic (Expanded)

Good IF games teach players how to think.

Bad:

Nothing happens.

Better:

You can’t open the door with your hands. It looks like it needs a key.

Great:

You rattle the handle. The lock is old and rusted. A key might work.

Design rule:

• Every failure should hint at success

• Every puzzle should teach the mechanic

• Never leave players guessing what verbs exist

16. Step-By-Step: Making Your First Adventure (Expanded)

Example Game: “The Last Cabin”

Rooms:

• Cabin

• Forest

• Basement

Items:

• Key

• Lantern

• Battery

Verbs:

• unlock

• use

• climb

• search

Puzzles:

• Find lantern

• Add battery

• Light basement

• Find key

• Unlock door

This creates:

• Exploration

• Item dependency

• Environmental storytelling

• Multi-step progression

21. Advanced Design Tips (Expanded)

Don’t Soft-Lock the Player

Bad:

• Drop key into pit

• No way to retrieve

Good:

• Allow retrieval

• Or reset puzzle

Layered Puzzle Design

Layer Example

Discovery Player sees locked door

Preparation Finds key

Layer Example

Execution Uses key

Consequence New area opens

Environmental Storytelling

Instead of:

There is a dead body.

Use:

The skeleton still clutches a rusted lantern. Scratch marks cover the stone floor.

22. Debugging & Testing (Expanded)

Test these cases:

• Random gibberish input

• Partial commands

• Verb-only commands

• Noun-only commands

• Commands in wrong room

• Repeated commands

• Save → quit → load → continue

• Try to break puzzles intentionally

Pro tip:
Play your game like a troll.
Try to ruin it.

23. Versioning, Compatibility & Limits (Expanded)

Z-Machine V3 constraints:

Feature Practical Limit

Rooms ~255

Objects ~255

Flags ~64

Memory ~128 KB

Text Compressed

This is perfect for:

• Mystery games

• Horror

• Puzzles

• Detective stories

• Small RPGs

• Educational adventures

24. Example Game Types You Can Create

 Detective Noir

• Interrogate NPCs

• Gather clues

• Piece together evidence

🏚 Survival Horror

• Explore haunted house

• Limited light

• Locked doors

• Hidden notes

 Sci-Fi Exploration

• Crashed ship

• Repair systems

• Restore power

• Escape planet

 Fantasy Dungeon

• Keys

• Potions

• Traps

• Secret rooms

 Educational Games

• History adventure

• Language learning

• Programming puzzles

25. FAQ (Expanded)

 Is this reverse engineering Infocom?
No. The Z-Machine spec is public. This is a clean-room implementation.

 Can I make my own interpreter?
Yes. The format is documented.

 Will these games still run in 20 years?
Yes. Z-Machine interpreters are stable and widely implemented.

 Can I export to other formats later?
Yes. Your .zproj.json is future-proof source code.

Final Thought

You’re not just building a game editor.
You’re reviving a lost creative platform.

This lets modern creators ship software for:

• 8-bit computers

• Vintage operating systems

• Emulators

• Future machines

That’s insanely cool.

