
n

u

•

'l'API,E OF CONTENTS

1.0 Introduction

2.0 The NABU Network

3.0 The NABU personal computer:

3.1 Memory Orsanization

3.2 The TMS9918A Video n:lsplay Processor·
3.2.1 Registers
3. 2. 2 Text Mode
3.2.3 Graphic 1 Mode
3.2.4 Graphic 2 Mode
3.2.5 Multicolour Mode
3.2.6 Sprites
3.2.7 VRAM table addresses
3.2.8 Graphics One Example

page

1-1

l-6

1-9

·1-9

. "1··10
1-J:l
1-15

. 1~15
. 1-·18

1"'18
1-19
.1··22
1··23

3.3 The AY-3-8910 Programmable Sound Generator 1-25

4.0 Internal Operating Software

4.1 Conventions Used by the IOS
4.1.1 Stack Operation and Requirements

4.2 Introduction to DOS 2-9
4.2.1 Segment Handling Routines 2-10

4.2.1.1 Introduction 2-10
4.2.1.2 Segment Control and Status Block 2-10
4.2.1.3 DOS Interface 2-13
4.2.1.4 Segment Headers 2-16
4.2.1.5 Examples 2:...19

4.2.2 Directory Routines 2-23
4.2.2.1 Intr~duction 2-23
4.2.2.2 Format of Directory 2-23
4.2.2.3 Accessing the Directory 2-25

Spec. 50-90020490 Page iii J·unc 8, 1984

4.2.3 Interrupt Structure and Tasking support
4.2.3.1 Introduction
4.2.3.2 Critical Regions
4.2.3.3 User Task Attachment Routines

4.2.3.3.1 Attachin~! Tasks to the Clock
4.2.3.3.2 Keyboard User Tasks
4.2.3.3.3 Expansion Slots

2-31
2-31
2-32
2-34
2-34
2-39
2-41

4.2.4 Human Input Devices 2-43
4.2.4.1 Introduction 2-43
4.2.4.2 Special Key Operation 2-43
4.2.4.3 Obtaining Data From the Keyboard 2-45
4.2.4.4 Sym Table Operation 2-47

4.2.5 Video Screen Device Driver

4.2.6 Printer Output

4.2.7 I/O router
4.2.7.1 Physical Device Identification
4.2.7.2 Logical Device Identification
4.2.7.3 I/O Routing Entry Point

4.3 Basic Operating Software

5.0 Extended IOS (XIOSJ

5.1 Introduction

2-49

2-51

2-52
2-52
2-53
2-53

3-1

4-1

4-1

5.2 Extended IOS Module Handler 4-1
5.2.1 Memory Structure

for Loaded XIOS Modules 4-2
5. 2. 2 Loading XIOS Modules 4-3
5.2.3 Unloading XIOS Modules 4-5
5.2.4 Resolving References in XIOS Modules 4-6

5.3 Disk System

5.3.1 Introduction

5.4 Multi-Window Screen Driver

5.4.1 Introduction
5.4.2 Operational Requirements
5.4.3 Module Specific Error Codes
5.4.4 Module Initialization
5.4.5 Module De-Initiali:~ation
5.4.6 DOS Call Interface
5.4.7 BOS Call Interface

Spec. 50-90020490 Page j v

5-l

5-l

6-1

6-1
6-1
6-1
6-1
6-2
6-2
6-7

June a, 1984 ••••

•

•

5.5 80 Column Screen Driver 7-1

5.5.1 Introduction 7-1
5.5.2 Operational Requirements 7-1
5.5.3 Module Specific Error Codes 7-1
5.5.4 Module Initialization 7-1
5.5.5 Module De-Initialization 7-2
5.5.6 DOS Call Interface 7-2

5.5.6.1 Input Status
from Video Screen Window 7-2

5.5.6.2 Output Data to Video Screen Window 7-3

5.6 CP/M Compatible Logical Device Drivers 8-1

5.6.1 Introduction
5.6.2 Operational Requirements
5.6.3 Module Specific Error Codes
5.6.4 Module Initialization
5.6.5 Module De-Initialization
5.6.6 DOS Call Interface

APPENDIX A
A.O GLOSSARY

APPENDIX B

8-1
8-1
8-1
8-1
8-1
8-2

9-1

B.O DOS and BOS number - Function Cross Reference 9-3

APPENDIX C
C.O Sample Program and Documentation 9-6

Spec. 50-90020490 Page v June 8, 1984

•

THIS PAGE LEFT INTENTIONALLY BLANK

•

Spec. 50-90020490 Page vi June 8, 1984

•

•

INTRODUCTION

1.0 INTRODUCTION

This document is intended to provide the application programmer
the necessary information and reference material to write
application programs for the NABU personal computer. Complete
programm~ng information on the internal operating software (!OS)
as well as programming information of the Video display processor
and the programmable sound generator are included.

One of the aims of this manual was to collect all the information
that was previously found in several documents into just one.
Although this has yielded a document of some 200 pages, each
section discusses a single concept related to the programming
environment at NABU. Therefore the programmer need only
investigate the portions of interest and not have to read the
entire manual.

In order to put the IOS into perspective, we include here a
section from the !OS Specification which spells out the
general functional requirements of IOS. This will enable you to
judge what to expect from the Internal Operating System.

DESIGN REQUIREMENTS

Overview

This design specification defines the Internal Operating
Software (!OS) for the NABU Personal Computer (NPC), a low
cost, expandable personal computer. It is unique because it
is capable of communicating on one-way, hybrid and two-way
cable systems and telephone networks, as well as operating in
a stand-alone mode, depending on which options are selected.
When used in association with a CATV network the NABU P.C.'s
prime function is to run software downline loaded from the
cable head-end.

A versatile set of internal operating system and device
handling software is required for the NABU P.C. to run appli
cations software under control of a user. For definition and
development purposes this software, collectively referred to
as the Internal Operating Software (!OS) consists of:

o Applications program interfaces to !OS facilities
o All physical device control and I/0 handlers
o Basic task controlling and interrupt handling software
o Communications Software

Spec. 50-90020490 Page 1 - 1 June 8, 1984

INTRODUCTION

The internal operating software does NOT include:

o Human Interface for Selection of Applications Programs
o Any ROM Software in the NPC
o Programming languages (eg. BASIC is not part of the

operating system.)
o Monitors <ie. examine and change memory, etc., etc. ,etc)
o High-level <user oriented) utilities

Operating Environment

The IOS must interact with four other functional components
of the NABU P.c •. These are:

o The Basic NABU P.C. hardware
o Optional hardware and peripheral devices
o Communications with external systems,

including the keyboard and NABU Adaptor (NA)
o Applications Software

It is the requirements and functions of these components
which essentially define the requirements for the IOS.

Internal Operating Software Requirements

The fundamental requirement of the Internal Operating
Software is to create an environment which supports the
loading and execution of applications programs in a simple,
efficient manner. The NPC hardware, its peripherals, communi
cations and the IOS are really just necessary evils required
to present content to an NPC user. The IOS provides a stable
interface which allows applications access to the other NPC
components while hiding the messy details of the hardware
configuration and communications protocols, which are really
of no interest to applications programs.

IOS Flexibility

In order to be as flexible as possible, the IOS resides
completely in RAM. A separate program, the MAIN MENU pro
gram, is loaded in along with the IOS when the NABU P.C. is
"booted". The MAIN MENU performs all human interface func
tions required to load in an application.

Spec. 50-90020490 Page 1 - 2 June 8, 1984

•

•

•

•

•

INTRODUCTION

A number of expansion options will be offered for the NPC •
These options may include: standalone operation through use
of ROM readers and/or floppy disks, additional communications
options though the use of telephone dialers, two-way cable
moderns and other devices, and the support of various other
peripherals via an I/O expansion bus. The !OS must be able
to operate in a configuration independent manner. This
implies:

o The !OS must be able to sense the NPC configuration when
"Booted"

o The IOS should protect the applications from becoming
"configuration-dependent"

o Standard I/O handling procedures and I/O routing must be
included in the !OS

o The IOS may be required to operate using different types
of primary storage devices.

Applications Interfacing

As was mentioned earlier the NPC and IOS exist to run appli
cations. In this sense applications software is the highest
level of software and it is in control of the IOS. Different
applications have different requirements. Animated video
games and other applications which require rich active human
interfaces will require fast, efficient, unadorned access to
NPC devices. At the other end of the scale are many of the
computation type applications which are willing to sacrifice
speed for I/O independence and ease of use. Other software
such as a screen-oriented word processor lies between the two
extremes of support.

This implies:

o Applications must have as much control as possible over
the !OS

o Applications should be able to access IOS features at a
number of different levels

o !OS support should be designed to fit applications
requirements and not vice versa

Real Time Requirements

Unlike many other microcomputer operating environments, the
NPC will have time-critical tasks. The most obvious of these
is communications on the CATV network. However many of the
applications planned for the NPC have real-time components •

Spec. 50-90020490 Page 1 - 3 June 8, 1984

INTRODUCTION

This implies:

o The lower layers of the !OS must be as time-efficient as
possible

o Interrupts must be well supported in the !OS
o Applications software has as much control as possible over

the enabling of interrupts and the complexity of interrupt
handling

o Some simple tasking constructs should be provided
o Attachment of applications supplied code to interrupt

handlers should be supported where possible
o Real-time counters {60Hz rate) should be supported by the

!OS

Application Time-out Requirement

Due to the T.V. screen being used for the basic output dev
ice, if no keyboard input is received for long periods of
time {approx. 20 to 30 minutes), the T.V. screen will go
blank {to prevent burning of the TV screen). This assumes
that the clock interrupt is running, inorder to do the tim
ing. The program execution must continue even though no
thing is being displayed. When any key on the keyboard is
activated, the T.V. screen will return back to its normal
display. The keystroke which re-activates the screen is not
passed on to the application program. {This time-out will
also be active if the NPC is in the "PAUSED" mode.} ~he eftxy
exee~~±eft ~e ~±me-e~~ req~±remeft~ ±e ~he eaee where ~he
N•P•€• ±e ±ft a 4ha%~4 me~e beea~ee ~he P~aSE key hae beeft
ae~±va~e~. ~he P~SSE f~fte~±eft eaHses ~he ~es ~e exee~~e ±ft a
very ~±gh~ %ee~T Hft~±% P~SSE f~fte~±eft ±e ~eae~±va~ed• ~h±e
~±gh~ %ee~ eeafte ~he keybeard fer ~he ae~±va~±eft e£ ~he
P~SSE7 ~~N~6T aftd S¥M keye.

Size Requirements

The total size of the !OS Kernel should not exceed lOK bytes
and shall be kept to a minimum. In order to accommodate all
the different !OS functions, the !OS will be divided into two
sections. The first section will be called the Kernel. This
will form a "bare bones" type !OS. The remainder of the !OS
will form the second section which is called the Extended !OS
(XIOSl. As applications require functions which are only
found in the XIOS, the application will be able to load in
the necessary sections {modules) of the XIOS, and then use
the functions. When the functions are no longer necessary,
the XIOS module can be deleted, thus freeing up memory space.

Spec. 50-90020490 Page 1 - 4 June 8, 1984

•

•

•

•

•

•

INTRODUCTION

Internal Operating Software Structure

The Internal Operating Software is divided into three
functionally separate components. These components are: the
IIO handlers, the Basic Operating Software (BOS), and the
Downloadable Operating Software (DOS).

I/0 Handlers

These portions of the software contain the low-level control
ling code to handle input and output devices. Each physical
device has its own I/0 handler. This software masks the
detailed physical operation of peripheral devices so that the
higher levels of the operating system may be peripheral
device independent. I/O Handlers provide:

o Hardware Dependent Device Control Code
o Interrupt Handling
o Initialization Code
o Data Link Layer Communications Protocols

Basic Operating Software (BOSl

This level of the operating system provides the key operating
control software for the NABU P.C •• It interfaces to the I/0
handlers, the Downloadable Operating Software and applica
tions programs. The BOS provides:

o Functional Level I/0 handling
o Calling of I/0 handlers and device control code
o Interrupt and task handling control
o A Method of Linking Directly to each BOS Routine

Downloadable Operating Software

This is the highest
It interfaces to
provide:

layer of the internal operating software.
the BOS and applications programs to

o Common Entry Points for Applications
o IIO Routing
o Configuration Identification

Spec. 50-90020490 Page 1 - 5 June 8, 1984

NABU NETWORK

2.0 THE NABU NETWORK

The NABU Network was formed on the idea of linking a
microcomputer to the cable network. The union of these two
technologies has paved the way for the introduction of a
microcomputer complete with a large base of software into the
homes of the population at large.

This section will describe the various links in the chain of
this Network with a view to giving a broad understanding of the
pathway followed by an application program from the cable company
to the end user's RAM. Refer to the diagram for a pictorial
representation of this data flow.

The Head End

As the name suggests, this is the originating node in the
Network. The Head End is actually a minicomputer and it is here
that all the programs and data to be broadcast on the cable are
found. The Head End minicomputer is constantly outputing the
information in its database and it does so in a cyclic fashion -
when all the information has been sent, the mini starts at the
beginning and re-sends the database. This cyclic nature of the
data flow enables one to envision the data as being written on
the edge of a wheel which is read as it revolves.

Each application on the "wheel" is tagged
identification number. This number becomes important
other end of the NABU Network to select the proper user
tion.

with an
at the

applica-

The Head End
database. Any
with in order to
as these changes

is also responsible for the maintenance of this
additions or deletions must be carefully dealt
ensure the overall integrity of the information
will alter the "diameter" of the "wheel".

The RF Modulator

The information
digital in nature.
data signal must
this function.

Spec. 50-90020490

output by the Head End m~n~ is of course
Before this can be put onto the cable, the

be modulated. The RF modulator will perform

Page 1 - 6 June 8, 1984

•

•

•

NABU NETWORK

~ The Combiner

•

•

Since there are other services on the cable (eg. TV, radio),
there must be another piece of equipment that will merge the NABU
programs with that information. The Combiner performs this task.
The NABU information is now broadcast on a specific channel and
sent into the cable for distribution.

The Adaptor

The Adaptor is a piece of hardware that acts as the interface
between the cable coming into the home of the NABU user and the
NABU Personal Computer.

Essentially, the Adaptor performs the reverse functions of the
Combiner and the RF Modulator. It is tuned to listen to the NABU
channel, de-modulate the signal and convert it into the digital
data that the NABU PC can understand.

On the cable side, the Adaptor is only capable of listening to
the information coming down the cable - it cannot send commands
back to the Head End. However, on the PC side of the Adaptor
there is two-way communication. The PC can tell the Adaptor what
it wishes from the cable and the Adaptor can inform the PC when
that data is available to be read •

Thus, when the user requests a particular application, the PC
sends a Read command and the identification number of the
application to the Adaptor. The Adaptor then "listens" to the
cable until the appropriately identified data appears. The
Adaptor fills its internal buffer and then informs the PC that
the data is ready. The PC obtains the data from the Adaptor
putting it into the appropriate location in the RAM of the PC •

--
Spec. 50-90020490 Page 1 - 7 June 8, 1984

NABU
HEAD END

(software
database)

NABU NETWORK

I I
MODULATOR I I

I I

------:-1 I
\ I

\ I
\ I

\ I
\ I

, ______ 1

I I
I I
I I
I COMBINER I
I I
I I
I I

C A B L E

I
I ADAPTOR
I I
1---------------1
I NABU I
I PC I
I I

- THE NABU NETWORK -

Spec. 50-90020490 Page 1 - 8

I

CATV
HEAD END

(Television
Radio etc.)

I

I
I

I

June 8, 1984

•

•

•

NABU PERSONAL COMPUTER

• 3. 0 THE NABU PERSONAL COMPUTER

•

•

INTRODUCTION

This section will provide the application programmer the
necessary introduction and information to the hardware of the
NABU Personal Computer.

3.1 MEMORY ORGANIZATION

The NABU Personal Computer is a 80 Kbyte machine. The 80K is
partitioned as follows:

ll The primary memory is 64K in size. It is the only region
where Z80 microprocessor code may be executed.

2l A 16K block of memory is dedicated for use by the TMS
9918A video display processor.

64K RAM

I
16k video!

RAM I
I

Z80A ITMS 9918AI

The above figure graphically
organization •

Spec. 50-90020490 Page 1 - 9

describes the memory

June 8, 1984

VIDEO DISPLAY PROCESSOR

3.2 THE TMS 9918A VIDEO DISPLAY PROCESSOR

The TMS 9918A Video Display Processor (VDPJ is responsible
for all video display for the NABU Personal Computer (NPCJ.
It provides for text, graphics and animation. Detailed
knowledge of the control of the VDP is not required since
all functions of the VDP are accessed through routines
provided in the Internal Operating System (IOSJ of the NPC.
This section will outline the features of the VDP and the
use of IOS routines to generate T.V. images for display on
the NPC. Further information may be found in the Texas
Instruments 9900 Data Manual (TMS9918A/TMS9928A/ TMS9929A
Video Display Processors).

The VDP produces a T.V. image that can be envisioned as a
series of display planes. Each plane has a display priority.
An image on a plane of higher priority will overwrite an
overlapping image on a lower priority plane. The display
planes in order of lowest to highest priority are BACKDROP,
PATTERN, and SPRITE. Sprites are special animation objects.
The VDP provides 32 sprite planes, with sprite plane 1
having the highest priority.

The lowest priority plane is the BACKDROP, which consists

•

of a single colour. It can be set to any one of 15 colours. •
The area covered by the backdrop plane is larger that the
other planes, and can form a border for the pattern plane.
With the T.V. displays commonly used with the NPC, the
border effect is generally limited to the top and bottom of
the screen, while the side borders are cropped by the T.V.
overscan. The colour of the backdrop is determined by write-
only register 7 of the VDP (see 3.2.1 REGISTERS).

The image displayed in the pattern plane is determined by
the contents of 16K of Video RAM (VRAMl provided for the
VDP. The contents of the PATTERN NAME TABLE (Name Table),
PATTERN GENERATOR TABLE (Pattern Table), and COLOUR TABLE
allocated in VRAM define the pattern plane image. The mode
of the VDP determines the size and organization of the
tables and hence the way in which VRAM is mapped to the
screen. The VDP can operate in any one of four modes, Text,
Graphics I, Graphics II, and Multicolour.

The images displayed in the sprite planes are defined in the
SPRITE ATTRIBUTE TABLE and SPRITE PATTERN GENERATOR TABLE.
These tables are also allocated in VRAM, and perform the
sprite equivalents of pattern plane tables.

Spec. 50-90020490 Page 1 - 10 June 8, 1984 •

•

•

•

VIDEO DISPLAY PROCESSOR

The VDP produces a screen image with an absolute resolution
of 256 X 192 pixels. The VDP divides the pattern plane into
blocks of pixels called patterns. In Text mode, the patterns
are 6 X 8 pixels, yielding 40 text pattern per line. In
Graphics modes the patterns are 8 X 8 pixels (32 patterns
per line>. There is a one byte entry in the Name Table for
each pattern position on the screen. For example, in
Graphics modes, the Name Table is 768 bytes long (32
patterns per row X 24 rows of patterns). In Text mode, the
Name Table is 960 bytes long <40 X 24). There is a one-to
one mapping of entries in the Name Table and screen pattern
positions (see Figure 1 for example). The screen origin is
defined as the top left corner.

+---+---+ -
I OJ 11
1---+---+ -
I 321 331
1---+---+

1---+---+ -
170417051
1---+---+ -
173617371
+---+---+ -

- - - +---+---+
I 301 311

- - - - - +---+---1
I 621 631

- - - - +---+---1

- +---+---+
173417351

- - - +---+---1
176617671

- - - +---+---+

Fig. 1. Graphics I Name Table Mapping
The figure illustrates the pattern positions on a T.V
screen with the VDP in Graphics I mode. The number
associated with each position maps to the entry
(offset> within the Name Table. The Oth entry in
the Name Table maps to the pattern position occupying
the top left corner of the screen.

The Pattern Table determines which pixels will be turned on
within a pattern. Each entry in the Pattern Table is eight
bytes long. The first byte of an entry defines the pixel
arrangement of the top row of a pattern, the second byte the
second row and so on. A '1' bit specifies a pixel that is on
and a '0' bit specifies a pixel that is off. The offset of
an entry into the Pattern Table (i.e. the entry number)
forms the 'name' of the pattern. A pattern can be displayed
on the screen in any pattern position by writing its name
(offset) to the appropriate entry in the Name Table. The
number of patterns available in the Pattern Table depends on
the mode of the VDP •

Spec. 50-90020490 Page 1 - 11 June 8, 1984

VIDEO DISPLAY PROCESSOR

The VDP is capable of producing fifteen colours plus
transparent. The Colour Table determines the colours of the
pixels defined in the Pattern Table. The high order nibble
of a byte in the Colour Table defines the colour of the '1'
bits in the associated byte of the Pattern Table. The low
order nibble defines the colour of the '0' bits. The
resolution of the mapping from Colour Table to ~attern Table
is dependent on the mode of the VDP. The colours associated
with each 4 bit nibble are shown in Table 1.

The base addresses of the VRAM tables are derived from the
values contained in the VDP's write-only registers, and are
subject to restrictions dependent on the mode of the VDP.
The base addresses are defined by calling the specific IOS
routine for that table, which will set the correct bits in
the appropriate VDP register. This process does not require
a knowledge of the register addressing scheme.

HEX VALUE

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

COLOUR

Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Gray
White

Table 1. Colour Assignments
The 4 bit hex values in the first column
produce the colour in the second column

Spec. 50-90020490 Page l - 12 June 8, 1984

•

•

•

VIDEO DISPLAY PROCESSOR

~ 3.2.1 REGISTERS

~

•

The VDP is equipped with eight write-only registers and a
single read-only status register. The write-only registers
are used to define the mode of the VDP, table addresses in
VRAM, and the backdrop colour. All access to these registers
is by way of calls to routines in the IOS. Descriptions of
these routines can be found in the section on BOS calls.

The write-only registers may be loaded with the IOS routine
VREGWR. Specialized routines are provided for specifying
VRAM table addresses. In the NPC environment a RAM image of
the write-only registers is maintained, allowing examination
of register contents. The registers may be 'read' by calling
VREGRD, or with specialized routines (see IOS document).

REGISTER 0
REGISTER 1

These two registers contain VDP option control bits. In
practise, they are not written to directly with VREGWR, but
rather are accessed through specialized routines. VSETXT is
called to set the appropriate bits to place the VDP in TEXT
mode. Other routines are VSETGl (Graphics I) and VSETG2
(Graphics II).

The VDP also has a 'vertical blanking' option (the video
screen is "blacked out"> which is selected in register 1.
The screen may be blanked with no effect on VRAM by calling
the IOS routine VBLKON. The screen is restored with VBLKOFF.
Other bits in register 1 determine the size and magnifica
tion of sprites (see 3.2.6 SPRITES).

REGISTER 2

Register 2 defines the base address of the Name Table. The
address is set by calling VNAMEST.

REGISTER 3

Register 3 defines the base address of the Colour Table. The
address is set by calling VCOLRST.

REGISTER 4

Register 4 defines the base address of the Pattern Generator
Table. The address is set by calling VPTRNST •

--
Spec. 50-90020490 Page 1 - 13 June 8, 1984

VIDEO DISPLAY PROCESSOR

REGISTER 5 ~
Register 5 defines the base address of the Sprite Attribute
Table. The address is set by calling VATRIST.

REGISTER 6

Register 6 defines the base address of the Sprite Pattern
Generator Table. The address is set by calling VSPRIST.

REGISTER 7

The high order 4 bits of register 7 define the colour code
of '1' pixels in Text mode. The low order bits define the
colour code for '0' pixels in Text mode and the backdrop
colour in all modes. Register 7 is loaded by calling
VREGWR.

STATUS REGISTER

The status register contains the following flags.

F - The Interrupt Flag is set at the end of the raster
scan of the last line of the display. It is reset to 0
after the VDP Status Register is read or the VDP is
reset.

c The Coincidence Flag flag is
sprites have '1' bits at the same
(see 3.2.6 SPRITES).

set whenever two
screen location.

5S The Fifth Sprite Flag is set whenever more than four
sprites are displayed on the same horizontal line. The
number of the fifth sprite is also loaded into the VDP
status Register. (see 3.2.6 SPRITES).

--
Spec. 50-90020490 Page 1 - 14 June 8, 1984

~

~

VIDEO DISPLAY PROCESSOR

~ 3.2.2 TEXT MODE

~

~

As is implied by the name, Text mode is primarily for
textual applications. The Name Table and Pattern Table are
used to define the appearance of the screen. The Colour
Table is not used. Patterns are 6 X 8 pixels, which allows
for an increase to 40 characters per line. The Name Table is
960 (40 X 24) bytes. The Pattern Table contains the library
of text patterns to be displayed. It is 2048 bytes long,
consisting of 256 eight byte entries. Since each text
position is only 6 pixels wide, the two least significant
bits of each row of the pattern are ignored. There can only
be two colours for the entire screen, one colour for all of
the '1' bits, and a second colour for all of the '0' bits.
The colours are defined in VDP register 7 (see 3.2.1
REGISTERS).

Typically, text patterns are loaded into the Pattern Table,
such that the entry number corresponds to the ASCII code for
the letter. For example, the ASCII code for the letter 'A'
is 65 <decimal>. With the eight byte pattern fot tbe letter
'A' occupying pattern number 65 in the Pattern Table, the
letter can be written to screen pattern position 3 by
writing 65 to the third entry in the Name Table (Figure 2).

Text mode allows for 40 characters per line on a T.V
display. However, because of T.V. overscan, characters
should not be written to columns 0,1,38 or 39. This
effectively reduces the display to 36 characters per line.

3.2.3 GRAPHICS I MODE

The VRAM tables that are used to generate the screen imaqa
for Graphics I mode are the PATTERN NAME TABLE (Name Table),
PATTERN GENERATOR TABLE (Pattern Table) and COLOUR TABLE.
The Name Table determines the screen position for a pattern.
T~e Pattern Table determines which pixels within a pattern
Wlll be turned on. The Colour Table determines the colour of
a pixel.

VIDEO DISPLAY PROCESSOR

The VDP divides the screen into 8 X 8 pixel patterns, ~
meaning that the Name Table has 768 one byte entries. The
Pattern Table contains a library of patterns that may be
placed in any pattern position on the screen. The Pattern
Table is 2048 bytes long, consisting of 256 eight byte
entries. There is a maximum, therefore, of 256 unique
patterns which may be displayed at any one time in Graphics
I. The offset of the pattern within the Pattern Table forms
the name of the pattern. To display a pattern at a specific
position on the screen, the pattern name is written to the
appropriate entry in the Name Table.

--Spec. 50-90020490 Page 1 - 16 June 8, 1984

~

~

•

•

•

VIDEO DISPLAY PROCESSOR

PATTERN TABLE

NAME TABLE

+--------+ <-- ENTRY 0

+--------+ <-- ENTRY 3
I < 6 5 l I
+--------+

+--------+ <-- ENTRY 95
I < 66) I
+--------+

+--------+ <-- ENTRY 959
I I
+--------+

+--------+ <-- ENTRY 0

+--------+ <-- ENTRY 65
1000000--1
1001000--1
1010100--1
1100010--1
1111110--1
1100010--1
1100010--1
1100010--1
+--------+ <-- ENTRY 66
1000000--1
1111100--1
1100010--1
1100010--1
1111100--1
1100010--1
1100010--1
1111100--1
+--------+ <-- ENTRY 67

+--------+ <-- ENTRY 255

+--------+

T.V. Display has 'A' (pattern 65) in screen position 3,
and 'B' <pattern 66) in position 95.

A

B

Fig. 2. Name and Pattern Table Mapping in
Text Mode

Spec. 50-90020490 Page 1 - 17 June 8, 1984

VIDEO DISPLAY PROCESSOR

The colours of pixels are specified in the Colour Table. The •
colour table contains 32 one byte entries. Each entry
defines two colours, the high order nibble of each entry
defines the colour of the '1' bits, and the low order nibble
defines the colour of the '0' bits. The first entry in the
Colour Table defines the colours for patterns 0 - 7, the
second entry for patterns 8 - 15 and so on. This scheme
imposes the following colour restrictions: 1) any one
pattern can only display two colours and 2) changing the
colours for one pattern implies a colour change for the
seven other patterns within the colour group.

3.2.4 GRAPHICS II MODE

Graphics II mode is similar to Graphics I mode except that
the Pattern and Colour Tables are longer.

The Pattern Table is expanded to 6144 bytes, allowing for
768 unique patterns, one for each pattern position on the
screen. Since the one byte entries in the Name Table allow
for a maximum of 256 unique entries, Graphics II segments
the Name Table into three blocks of 256 names each such that
the first block maps pattern names to the upper third of the
screen. The second and third blocks map pattern names to the
middle and lower thirds of the screen respectively. The
Pattern Table is similarily segmented. Entries in the first
third of the Name Table map to patterns in the first third
(2048 bytes, 256 patterns) of the Pattern Table.

The Colour Table is also expanded to 6144 bytes. There are
768 eight byte entries. Thus, there is one eight byte entry
in the Colour Table for each eight byte entry in the Pattern
Table. The high order nibble of each byte defines the colour
of the '1' bits in the corresponding byte of the Pattern
Table. The colour of the '0' bits is defined by the low
order nibble. Thus in Graphics II mode, two colours may be
defined for each row (byte) of a pattern. The Colour Table
is segmented into three equal parts in the same manner as
the Pattern Table.

3.2.5 MULTICOLOUR MODE

The VRAM tables that need to be allocated for Multicolour
mode are the Name Table and Pattern Tables. The Colour Table
is not used, colours are derived from the Pattern Table. As
Multicolour mode is rarely used, a complete description is
not provided in this document. Further information may be
found in the Texas Instruments 9900 Data Manual.

--
Spec. 50-90020490 Page 1 - 18 June 8, 1984

•

•

•

•

•

VIDEO DISPLAY PROCESSOR

The pattern plane is divided into blocks of 4 X 4 pixels (64
X 48 blocks). The colour of each block can be any one of the
fifteen video display colours plus transparent. The backdrop
and sprite planes are active.

The Name Table consists of 768 one byte entries. The name
points to an 8 byte segment of VRAM in the Pattern Generator
Table. The colour to be displayed is determined by the
information contained in the Pattern Table.

3.2.6 SPRITES

Sprites are special animation patterns. Up to 32 sprites are
available, one for each of the sprite planes. Sprites may be
used in Multicolour and Graphics modes, but not in Text
mode. Each of the sprites can cover an 8 X 8, 16 X 16, or 32
X 32 pixel area on its plane. Any part of the plane not
covered by the sprite is automatically transparent. All or
part of each sprite can also be transparent. The highest
priority sprite is 0, the lowest priority is sprite 31. All
sprites are of higher priority than the pattern and backdrop
planes. The location of a sprite is defined by the top
leftcorner of the sprite pattern. The sprite can be easily
moved pixel-by-pixel by redefining the sprite origin (!OS
call SPMOVE) •

The sprite Attribute Table and the Sprite Generator Table
are allocated in VRAM. These tables are the sprite
equivalents of the Pattern Name Table and Pattern Generator
Tables. Each entry in the Attribute Table is four bytes
long, with one entry for each of the 32 available sprites.
The first byte of an entry defines the vertical position of
the sprite from the top of the screen in pixels. Values
between -32 and 0 allow a sprite to bleed in from the top
edge of the backdrop. A value of -1 causes the sprite to be
positioned at the top of the screen, touching the backdrop
area. The second byte defines the horizontal position of the
sprite from the left edge of the display, A value of 0
positio~s the spri~e against the left edge of the backdrop.
The th~rd byte ~ef~nes the name of the sprite. This name
maps to the Spr~te Generator Table in the same way patterns
are mapped from the Name Table to the Pattern Table. The low
order four bits of the fourth byte contain the colour code
for the '1' pixels of the sprite ('0' pixels are
transparent). The most significant bit of the fourth byte is
the_ Ear~y Cl~ck Bit. When set to 'l', the position of the
spr7te ~s sh~ft7d to the left by 32 pixels, allowing the
spr~te to bleed ~n from the left edge of the display •

--Spec. 50-90020490 Page 1 - 19 June 8, 1984

VIDEO DISPLAY PROCESSOR

The Sprite Generator Table has up to 256 eight byte entries, ~
for a maximum of 2048 bytes long, and is equivalent in
function to the Pattern Generator Table. The lOS routine
VSETSP is used to set the size and magnification of the
sprites. Sprite size can be either 8 X 8 or 16 X 16 pixels.
With 8 X 8 pixel sprites, the Generator Table uses eight
bytes to define the sprite. When 16 X 16 sprites are used,
the Generator Table requires 32 bytes. A 16 X 16 sprite is
effectively divided in to four equal quadrants, with the
bytes in the Generator Table being mapped to the screen as
shown in Figure 3. The sprites can also be magnified one or
two times. With a magnifaction factor of two, each bit in
the Generator Table is mapped into 2 X 2 pixels on the
screen display.

There is a limit of four sprites on any horizontal line. If
more sprites are positioned to the same line, the four
highest priority sprites are displayed normally. The fifth
and subsequent sprites are not displayed on that line. The
fifth sprite flag is set and the number of the fifth sprite
is loaded into the VDP Status Register.

A value of DO Chexl in the vertical position field of an
entry in the Sprite Generator Table terminates sprite pro-
cessing. This allows programmers to blank part or all of the
sprites. The lOS routine SPMARK will write DO (hexl to any
sprite, and marks the end of the active sprites in the
Attribute Table.

Whenever two active sprites have '1' bits at the same screen
location, the coincidence flag in the VDP Status register is
set.

Spec. 50-90020490 Page 1 - 20 June 8, 1984

•

•

•

•

VIDEO DISPLAY PROCESSOR

SPRITE GENERATOR
TABLE ENTRY

Spec. 50-90020490

Fig. 3 Sprite Generator Table Mapping
for 16 X 16 (lX magification)
sprites •

Page 1 - 21 June 8, 1984

VIDEO DISPLAY PROCESSOR

3.2.7 VRAM TABLE ADDRESSES

There are certain restrictions on where tables may be
located in VRAM, dependent on the mode of the VDP. For
example, in Text mode, the Pattern Table is 2048 bytes
long, and must start on a 2 Kilobyte boundary in VRAM.

VDP MODE TABLE LENGTH (max) VRAM BOUNDARY

Text Name 960 lK
Pattern 2048 2K

Graphics I Name 768 lK
Pattern 2048 2K
Colour 32 64-byte
Sprite Attribute 128 128-byte
Sprite Generator 2048 2K

Graphics II Name 768 lK
Pattern 6144 8K
Colour 6144 8K
Sprite Attribute 128 128-byte
Sprite Generator 2048 2K

The conventions for the NPC environment are that the
Pattern Table always starts at VRAM address o. The Name
Table is placed at the next available boundary. In
Graphics II mode, the Pattern Table is located at VRAM
address O, and the Colour Table at 8192.

Note that in Text and Graphics I modes several screens
may be defined in VRAM with multiple Name Tables. Each
Name Table starts on a lK boundary. To display a
particular screen, the address of the desired Name
Table is written to VDP register 2 with the IOS routine
VNAMEST. This is particularly useful for setting up
several screens of text.

--
Spec. 50-90020490 Page 1 - 22 June 8, 1984

•

•

•

VIDEO DISPLAY PROCESSOR

4lt 3.2.8 GRAPHICS I EXAMPLE

4lt

•

It is desired to place the following pattern at screen
pattern position 255 (hex FF) in Graphics I mode using
pattern number 8 in the Pattern Table. The pattern is
to be black on a grey background.

* *
* *
* *
** each * represents one pixel on the screen
**

* *
* *

* *

PATTERN TABLE
entry 00 --> +--------+

I I

entry 08 --> +--------+
I 81 I
I 42 I
I 24 I
I 18 I
I 18 I
I 24 I
I 42 I
I 81 I
+--------+

NAME TABLE

entry 0 --> +--------+
I I
+--------+

entry FF --> +--------+
I 08 I
+--------+

(BIT MAP)
(10000001)
(01000010)
(00100100)
(00011000)
(00011000)
(00100100)
(01000010)
(10000001)

COLOUR TABLE

entry 0 --> +--------+
I I

entry 1 --> +--------+
I 10 I
+--------+

--
Spec. 50-90020490 Page 1 - 23 June 8, 1984

VIDEO DISPLAY PROCESSOR

The '10' (hex) in the Colour Table sets the '1' bits
patterns 8 - 15 to black and the '0' bits to transparent. To
the screen to grey, VDP register 2 is set to 'OE' (hex).

in
set

Spec. 50-90020490 Page 1 - 24 June 8, 1984

•

•

•

THE SOUND GENERATOR

~ 3.3 The Programmable Sound Generator

•

•

As previously mentioned, all sounds produced by
under the control of the AY-3-8910 programmable
erator (PSG). This device uses 14 registers to
variety of complex sounds. The PSG has three
channels to produce the sound effects.

the NPC are
sound gen
generate a
individual

Producing sounds using the audio generator may be divided
into several sound generating blocks. They are:

1) tone generators
2) noise generator
3) amplitude control
4) envelope control

The registers of the PSG are used to enable/disable each of
these blocks and to select the parameters of the channel in
the PSG To read or write to the registers of the sound chip,
the IOS BOS routines AUDWR and AUDRD MUST be used. See
section 4.3

Register 0 and register 1 provide the period or frequency of
the tone to be produced by channel A of the PSG. All 8 bits
of register 0 is used but only the lower 4 bits of register
1 are used. This provides a tone frequency resolution of 12
bits with register 1 containing the most significant 4 bits
and register 0 providing the remaining 8 least significant
bits.

Register 2 and register 3 provide the
the tone to be produced by channel B.
is provided with register 3 providing
bits.

period of frequency of
Twelve bit resolution

the most significant 4

Similarily Register 4 and register 5 provide the tone period
for channel C with register 4 providing the most significant
4 bits of the twelve bits .

Spec. 50-90020490 Page 1 - 25 June 8, 1984

THE SOUND GENERATOR

The following diagram should clarify the above information.

coarse reg

I 31 21 11 0 I

reg 1,3,5
I
I

fine reg

I 71 61 51 41 31 21 11 01

reg 0,2,4
I
I
I
I
I

1111101 91 81 71 61 51 41 31 21 11 01

tone value of the channel

There are two formulae that relate output tone frequency to
the value in the twelve bit register. They are:

and

Where

f= 223.750
tp

tp= 256ct + ft

f = the frequency of the sound to be generated
tp= the tone period to be written to the registers
ct= the coarse tune register (registers 1,3,5)
ft= the fine tune register (registers 0,2,4)

Register 6
generated.
register 6
frequency.

provides the tone period of the noise to be
It uses only the least significant 5 bits of
and is the only register controlling the noise

Similarily, the freqency of the output tone may be related
to the noise period by the following formula:

f= 223750
np

Where f = the frequency of the noise to be generated
np = the noise period to be written to register 6

Spec. 50-90020490 Page 1 - 26 June 8, 1984

•

•

•

•

•

•

THE SOUND GENERATOR

Register 7 enables and disables each of the three channels.
Register 7 uses inverted logic therefore, a 1 indicates that
the channel is disabled.

channel
function

I C B A I C B A I
I NOISE I TONE I

I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I -register 7

Bits 7 and 6 are not used for generating sounds.

Register 8, 9 and 10 controls the amplitude for channels A,
B, and C respectively as well as the envelope pattern.

If bit 4 is zero then the least significant 4 bits provide
the amplitude <volume) of the channel's sound. This provides
16 levels of amplitude with 15 being the greatest and 0
producing no sound.

If bit 4 is 1 then envelopes
each channel is determined
defined by the lower four bits

are enabled and amplitude
by the envelope pattern
of the register.

of
as

The rema1n1ng registers 11, 12 and 13 provide envelope
control. There are two ways of controlling envelopes. First
is to vary the frequency of the envelope using registers 11
and 12, the second way is to vary the shape and cycle
pattern of the envelope.

The envelope period may be resolved to 16 bits by combining
registers 11 and 12. Register 12 provides the most
significant 8 bits and register 11 provides the least
significant 8 bits. As before, 2 formulae may be used to
relate the envelope period to the output envelope frequency.
They are:

f= 13984
ep

and

ep= 256ct + ft

Where
f =the desired envelope frequency
ep =the envelope period
ct =the coarse tune register (reg 12)
ft =the fine tuning register (reg lll

Spec. 50-90020490 Page 1 - 27 June 8, 1984

THE SOUND GENERATOR

Register 14 controls the envelope shape or cycle. Only the 4lt
lower four bits of the register are used. Each bit has an
individual function.

I 71 61 51 41 31 21 11 01 register 14

----- hold
-------- alternate

----------- attack
-------------- continue

----------------- not used
-------------------- not used

----------------------- not used
-------------------------- not used

If hold is set to 1 the envelope is limited to one cycle and
holds the current state of the envelope counter.

If alternate is set to 1 the envelope reverses the direction
after each cycle.

If attack is set to 1, the envelope will count up.
If attack is set to 0, the envelope will count down.

If countinue is set to one the cycle pattern will be defined
by the hold bit otherwise the envelope counter will reset to
zero and then hold.

--Spec. 50-90020490 Page 1 - 28 June 8, 1984

4lt

•

INTERNAL OPERATING SOFTWARE

• 4.0 THE INTERNAL OPERATING SOFTWARE

•

•

The INTERNAL OPERATING SOFTWARE (IOS) is a versatile operating
system used to run the application software. It provides a
standard interface and sets of common routines to link the
applications to the hardware of the NPC.

The IOS may be broken into 2 distinct portions for the
application programmer. They are:

1) The Downloadable Operating Software (DOS)
2) The basic operating software (BOS)

Downloadable Operating Software

This is the highest layer of the internal operating software. It
interfaces to the BOS and applications programs to provide:

o Configuration Identification
o Functional Level I/0 handling
o Calling of I/O handlers and device control code
o Interrupt and task handling control
o common Entry Points for Applications
o I/O Routing

Basic Operating Software

This level of the operating system provides the key operating
control software for the NABU P.C •• It interfaces to the
Downloadable Operating Software and applications programs. The
BOS provides:

o Functional Level I/O handling
o Common entry points for applications •

--
Spec. 50-90020490 Page 2 - 1 June 8, 1984

CONVENTIONS

4.1 CONVENTIONS USED BY THE INTERNAL OPERATING SOFTWARE

The IOS memory map structure is similar to that of Digital
Research's CP/M operating system. Thus, any CP/M system may be
used as a development system for the NABU P.C. Programs written
in a high level language compatable with CP/M will run under the
IOS. However there are differences between CP/M and IOS. Not all
CP/M calls are implemented in the basic IOS and the stack
requirements are different.

The memory map below IOS is layed out as follows:

BASE to FFFFH

BASE-l
0100 hex:

DOFF hex:
OOOB hex:

OOOA hex:
0008 hex:

0007 hex:
0005 hex:

0004 hex:
0003 hex:

0002 hex:
0000 hex:

reserved for IOS I
---------------------------1

Applications Program I
Area+ StackCsl I

---------------------------1
Reserved Area for IOS I

I
---------------------------1

I
Jump to DOS IOS calls I

---------------------------1
Jump to BASE I

I (the jump to DOS CPM calls) I
1---------------------------1
I reserved for IOS I
I I
1---------------------------1
I Jump to IOS warm start I

(Note that there is a data area within IOS that is reserved for I
the use of applications. This area is unique in that the memory
contents remain intact across resets and warm starts. This can
be useful for "chaining" programs. This area is at locations
FF80 (HEX) through FFDF (HEX) inclusive.)

Applications programs interface to the IOS through three entry
points only. These are locations OOOOH, 0005H and 0008H. A
discussion of each location now follows. (Note also that
applications may also enter IOS routines through BOS calls. See
section on BOS Calls elsewhere in this manual.)

--
Spec. 50-90020490 Page 2 - 2 June 8, 1984

•

•

•

CONVENTIONS

• ~ .t.Q LOCATION .Q.QQQ. ~

•

J

•

An application program that CALLs or JUMPs to location 0 will
cause a warm start of the IOS. This CALL is used when an
application program is finished running and wishes to return to
whatever human interface program invoked it. In order to be
compatable with CP/M, this entry point jumps to the WARMBOOT
entry in a jump table which is identical to CP/M's BIOS Jump
Table. It is recommended that applications programmers avoid
attempting to use the BIOS Jump Table. The IOS is structured this
way to be compatable with CP/M applications programs and to
provide support expansion to the IOS.

~ .t.Q Location 0005 IWI_

Location 0005 Hex is the same as the standard CP/M entry point.
Details on this entry point are found in the section on CP/M
Compatible Calls. Note that locations 6 and 7 contain a pointer
to BASE, the first location used by the IOS. This allows applic
ations programs to determine how much memory is available. BASE
may vary between different versions of the !OS •

.cALL_ .t.Q Location m lim~.

Location 0008 Hex is the entry point into the DOS IOS Calls.
These calls are detailed in the section on DOS Calls. This entry
point has the same calling conventions as the entry point at
location 0005, except it is used for non-CP/M compatable operat
ing system calls. Note that locations 9 and A do NOT point to
BASE.

When the MAIN MENU starts executing it will find the following
initial conditions have been set:

o The Stack Pointer is set to BASE
(the first PUSH will write to BASE-l and BASE-2)

o All other Z-80 registers are undefined

o All clock processing turned on
-Flashing Cursors Enabled
-Clock User Task Handling Enabled
-Real Time Clock Incrementing Enabled

o The Video Chip is set to text mode •

--Spec. 50-90020490 Page 2 - 3 June 8, 1984

I

CONVENTIONS

o Logical to Physical I/O Routing Set up to emulate
Standard CP/M assignments:

-Video Device Location 1 set to:
38 wide by 24 deep window with
underline flashing cursor

-Console Output Routed to Video
Device Location 1 (see window above)

-Console Input Routed to Human Interface
Device Location 1 (Keyboard}

-List Routed to Printer
-Reader Routed to Human Interface

Device Location 1 (Keyboard}
-Punch Routed to Video

Device Location 1 (see window above}

After the MAIN MENU program gains control, it has the ability to
alter the initial conditions for the application program which is
to be loaded. For a complete list of the initial conditions as
set up by the MAIN MENU program, please consult the Master
Directory and Main Menu Specification 02-90020480.

4.1.1 Stack Operation and Requirements

The !OS only supports a single stack which is used by both the
!OS and applications programs. This is different from CP/M which
has two or more stacks, one or more used by CP/M and one for the
application. Note that the !OS initializes the stack pointer to
BASE so the stack will start at the highest available memory
location and build down. The number of bytes of stack required by
!OS depends on the number of peripheral devices attached. For
the basic IOS, up to 64 bytes may be used by the operating
software. This means an application program must be sure to
allow for a stack size 64 bytes larger than what the application
requires. The addition of peripherals to the NPC may increase the
minimum stack requirement.

Spec. 50-90020490 Page 2 - 4 June 8, 1984

•

•

•

•

--

CP/M COMPATIBLE CALLS

~he ~es e~~~ef~S a nHmeef ef ee~~e wh±eh &fe e±m±~ar ~e e~endard
€PfM nen-die~ ~e ea~~e~ Ne die~ erien~ed ea~~e are e~~~er~ed~
~he €PfM eem~a~ib~e ea~~e ~he~ ere ~revieee ere £er reee~~±n~ ~he
eye~em7 end fer ~er£erm±n~ %9 rrem ~he iegieel eeviees €9NS9nE7
RE~BBR7 PSN€H end n~s~~

~he ~es ees €PfM eem~a~ee~e ~fe feei~i~iee eeai eniy wi~h ~egieai
deviees7 ~e~g~ €8NS8nE7 nfS~7 RE~BER7 PSN€H~~ ~he ~eS ~fe
Hend~ere epere~e wi~h s~eeifie ~hye~eai devieee~ f~be f9S
ne~~aeheen ~he ~e~ieai deviees ~e ~he ~hys~ea~ deviees~ Per
e~am~~e7 ~his a~~ews an ~S€ff eharaeeer ~e be sen~ ~e ~he iegiea~
deviee end i~ ends ~P a~ ~he ~hysiea! eeviee~f

~he £e~~ewing ~e~iea! deviees ere defined~

RE¥B9AAB~

S€REEN~
:o~s~~

RE~BBR~

PSN€H~

~inp~~ per~±en ef €9NS9f>E~
~e~~~~~ ~er~ien ef €9NS9nB~
~e~ep~~~
~in~~~ deviee~
~e~~p~~ deviee~

HeM~ ~N~ERP~€E -
RB¥P~B-:
if9¥S~f€R ~-:
if9¥S~~€R i!-:-

S€RBEN WfNBeW f~-:
PRfN~ER~

H ~inp~H
9i! Hn~~H
93 Hn~~H
~i ~e~~p~e~
i!~ ~e~~~~H

e
i
~
3
4

~se±~nmen~s ef physieai eeviees ~e ~egieai eev±ees are perfermee
ey Hein~ ehe ~~9 ReHeer Enery Peine~ When a ~regram begins
e~eeHeien ebe fei~ewing ~egiea~ ee ~hysiea~ eeeeebmen~s ere made~

n9EH€~

RB¥B9AAB
SERE EN
flfS~
RE~BBR

P6N€H

PH¥Sf€~

RE¥B9AAB
S€RBEN WfNB9W fi
S€REEN WfNB9W fi
S€RBEN WfNB9W fi
S€REEN W~NB9W f~

Ne~e ehe~ S€REEN WfNB9W fi is defined by ~he eye~em end is
evei~eeie ~e ~be e~p%iea~ien when ie s~ar~s~

~he €PfM eem~e~ie%e ee~%e ~revieee in ~he ~es ~hreHgh ~eea~ien 5
!ire ee £eiiewe~

--
Spee~ 59-9992!9499

CP/M COMPATIBLE CALLS

S¥S~SM=RSSS~ ~e~ii ft~mee~ 88H~
-~e~£e~ms some £~fte~~eft es e j~m~ ~e ~eee~~eft 8888 Hex
-eft~~y ~~~eme~e~s~

€ Reg~s~e~~ SS Hex
-±s ftO~ ~e-eft~~eft~

€6NS6bB-~NP5~ . ~e~i~ ft~mee~ SiH~
-~;ads ~he fte~~ ehe~eeee~ £~em ~he ~egie~~ eeftee~e wi~h eehe
~he e~ii does fte~ ~e~~~ft ~"~*~ e ehe~ee~e~ ~s ~eedy~
i~h~e e~%% w±%~ eftry eeee~~ €PfM eem~ee~ere ~se~~
ehe~ee~e~s~ ~£ ~he »¥ssn ~ey is hi~T e »¥» ±e ~e~~~fted~ ~£
~he »Ne» ~ey ie hi~ e »N» ie ~e~~~fted~ ~rr ethe~ ~ey eedes
eeeve ~PH e~e igfte~ed~+

-eft~~y ~~~emete~e~
€ Regie~e~~ S~ He~

-Re~~~fted V~r~es~
~ Reg~ste~~ €hereeee~ ~"~~~

-ie fte~ ~e-efterefte

eeNSens=ee~Pe~ ~e~r~ "~eer S2H~
-e~~~~~e e ehe~eeee~ ~e ~he ~eg±ee% eefteere

tS±ftee the de£a~r~ ~hye~e~r eefteere d~iver ~e aes e~ir
e~2 eftd S~3 eefts~%~ ~he s~ee±£ie~~~eft £er BaS eeir ~3H
£e~ eeft~rer eharaeee~ ifteer~~eea~~eH~+

-eft~~y ~~~emete~s~
€ Reg~ste~~ S2 He~
B Regisee~~ €ha~ee~e~ ee ee e~ep~e

RB~BSR=~NPB~ ~e~rr ft~meer 83H~
-ge~ e ey~e £~em ~he reg±e~r ~~PE

ftee ~e~~~" te ~he e~rriftg ~~eg~em
reede~ eeft~rer wi~r
~Heir ehe eharaeee~

hee eeeft ~eed~
t~hie e~ir w~r~ eftiy
ehe~ae~e~s~ ~£ ehe »¥esn
ehe »Ne» ~ey ie hi~ e nN»
eeeve ~PH e~e ignored~+

-en~ry ~~~ame~e~e~
€ Reg±e~e~~ S3 He~

-~e~~~fted v~r~e~

aeee~~ €PfM
~ey is hie, e
±e ~e~~~ned~

~ Reg±e~e~~ eha~ae~e~ reed
-ie ftee re-en~~afte

P8N€H=68~P8~ ~e~rr ft~mbe~ S4H+
-e~~~~e e ey~e ee ehe regie~% ~~PE ~~neh

eem~a~iere ~S€%~
»¥n ±s ~e~~rned~ ~£
~ir e~he~ ~ey eedes

tS±ftee ehe de£e~re ~hys±e~r eenseie drive~ is aes e~ir
e~2 eftd S~3 eefts~re ehe s~ee±£±e~e±eft £er aes e~r~ ~3H
£e~ een~~er eharaeee~ ±nee~~~e~aeieH•+

-en~ry ~~~eme~e~e~
€ Reg±s~er~ S4 He~
B Reg±e~e~~ ehe~ae~e~ ee ee e~e~~~

--
S~ee~ 5S-98S2S49S P~ge 2 - 6

•

•

•

•

•

•

CP/M COMPATIBLE CALLS

MS'l'=91:f'l'Pl:J'i' -feaH nt1111Bet' 95Ht
-eu~~t:l~ a ehat'ae~et' ~e ~he ie~iea% iie~ de~±ee
-en~t'Y ~arame~ers~

€ Re~ie~er~ 95 He~
£ Re~ie~er~ eharae~er ~e be eu~~t:l~

BfRE€'l'-€9NS9nB-f9 .fea:l:i nt1111ber 95Ht
-~re~±des- unadorned fr9 £t'e111f~e ~he :l:eg±ea% eense:l:e
l:J~en en~t'Y7 ~he B re~±s~er e±~her een~a±ns an 9PP He~7
dene~±ng a eenseie ±n~t:l~ requee~7 or a eharae~er ee be
eu~~u~~ f£ ~he ±n~ue vart:le ±£ 9PP He~; ~hen ~he
£t:lnee±ens re~urne w±~h ~he A reg±s~er ee~ ee 99 ±£ ne
eharae~er ±e ready a~ ~he ie~±eai e~herw±ee ~he A
re~±e~er ±e se~ ~e ~he eharae~er vart:le ±n~t:l~ £re111 ~he
:l:e~±ea% eense:l:e~
i'l'h±e ea%:1: w±:l:i en:l:y eeee~~ €PrM eel!l~a~±b:l:e AS€ff
eheree~ere~ f£ ~he ~¥BS~ ~ey ±e h±~7 a ~¥4 ±s re~t:lrned~ f£
ehe ~Ne~ ~ey ±e h±~ a ~N~ ±e re~urned~ A:l:i e~her ~ey eedee
abe~e ~PH ere ±~nered~t
iS±nee ehe de£at:1%e ~hye±ear eense:l:e driver ±e ees ear%
9A% and 9A3 eensHre ~he e~ee±£±ea~±en £er ees eeri A3H
£er een~rer ehareeeer ±n~erpre~e~±en~t

-en~ry ~arallle~ere~
€ Regie~er~ 95 He~
£ Reg±s~er~ PP He~ f±n~u~t er

eharaeeer ~e be et:l~~u~
-re~Hrned va:l:t:le~

A Re~ie~er~ eharee~er e£ 99 He~ f±n~t:l~t
ne~h±ng ±£ et:l~~t:l~

-±e ne~ re-en~ren~

PRfN'l'=S'l'RfN6 fear% nt:lmber 99Ht
-~r±n~ a e~r±ng ~e ~he reg±ea% eensere

'l'he eharae~er s~r±n~ eeered ±n memery
~ein~ed ~e by ~he BB reg±e~er ±e sen~
eense%e~ A ~.~ ±e Heed ee a de%±111±~er
e~r±ng~

frem a
ee ehe
ee ehe
ee end

bt1tfer
:l:eea~ien
re~±ea%
ehe ~rin~

iSinee ~he de£et:1re physiea% eense:l:e driver ±s ees ea%:1:
9A% and 9A3 eenst:lre ehe s~ee±£±eae±en £er ess ear% A3H
£er een~re% eheraeeer ±n~er~reee~ien~t

-en~ry ~era111e~ers~
€ Regie~er~ 99 He~
BB Reg±eeer~ ~ein~er ~e serin~

--
S~ee~ 59-99929499

CP/M COMPATIBLE CALLS

R£~B-€9NS9bB-B6PPBR ~ee%% n~mbef SAM~
--feed a-fine ef ed±~±ed xeg±eei eonsoxe ±n~~~ ~e d b~ffer

~he inp~~ is s~ofed in ~he memefy bttffef pein~ef ~e by
~he BE fe~is~ef~ ~f ~he b~ffef eveffrews eense%e ±np~~
ie ~efmine~ed~ ~he £ofma~ e£ ~he bttffef is~

MME=BBP=S'H!£~ B¥'1'£-:
N6MB£R=9P=€H~RA€~BRS=RB~B~ ·B¥~E-t
€H~R~€~ER=EBPPER~ ~RR~¥f%~~MA*=BBP=S~SEf B¥~E7

~he 4694 ~ey ~SB Hex~ ef €N~Rn ~ ~a~ Hex~ w±ii ~efmina~e
~he inp~~ r±ne~ ~he BEnE~£ ~ey w±xi fieie~e ~he ~Pe¥±es%1
~yped ehafae~ef~
f~h±s ear% w±ii en%y
ehafae~efe• ~£ ~he 4¥BS4
~he 4N94 ~ey ±e hi~ e 4N4
above ~PH afe i~nefed~f

-en~ry pafame~efs~
€ Re~is~ef~ 9~ Hex

eeee~~ €PfM
~ey ±!! h±h e
ie fe~ttrnech

eempa~ibie ~S€tt

4¥4 ±s peeHPftee• ~~
~xi o~nef ~ey eedes

BE Re~is~ef~ Pein~er ~e M~*=EBP=S~SE
~MA*=BBP=S~SE mtts~ be se~ as we%%~

-re~~rned ve%~es~
€onsofe €hafaeeefe ±n Btt££ef
N6MBER=9P=€HAR~€~£RS=R£~B ee~

-±s no~ fe-en~fan~

6£~=€9NS9nE=S~~~BS ~eeri nttmbef 9BH~
-ehee~ ~o !!lee i£ eheree~ef has been ~ypee a~ ie~iear eeneere
-en~fY pefeme~ers~

€ Re~ie~ef~ 9B Hex
-re~ttrned va%tte~

~ Re~is~ef~ 99 Hex -Ne ehafee~er feady
PP Hex -€hafae~ef is feedy and wei~in~

-±e no~ fe-en~ran~

~fe=Ree~ER~ ~~~~eH ~eeri nttmber 8AH~
-e~~aehee e per~ie~%ar phys±ee% deviee ~o a io~±ee% dev±ee
-en~ry pereme~ers~

e Regie~er~ 811 Hex
£ Regie~er~ PH¥Sf€t'tb=BEV~€E
B Re~is~er• b96f€i'lb-BEV%€E

Whe:e b96f€t'lb=BEVf€E is ~he by~e veitte o£ a io~iee%
dev~ee ee ±den~i£ied *" ~he eee~ien above and
PH~Sf€Ab=BEV~€E is ~he by~e ve%~e o£ e phys±ee% ceviee~
:h~~ ee%% wir% eettse a%% ettbseqtten~ ff9 ~o ~he rogiee%
~:::ee ~;e.be pe:termee.by ~he phys±eei ceviee a~~eehee~

eexr ~8 eve~iebie ~n ~he Bes~

Spe~~-~~=;~~2~~;~---
Page 2 - a

June 8, 1984

•

•

•

DOS CALLS

~ 4.2 INTRODUCTION TO DOS

~

~

The highest (and simplest) level
applications programs is through
Software (DOS).

of access to the
the Downloadable

ros for
Operating

The entry points to the IOS use a standard calling convention and
calling procedure. Each particular function is given a call
number. This number is passed in the Z-80's C register. A
function call may also accept zero, one, or two parameters as
inputs and return zero or one value as an output. These
parameters are passed as follows:

Function Number: Passed in c register if a BYTE

Return Value: Returned in A register if a BYTE
Returned in HL registers if a WORD

One Parameter: Passed in E register if a BYTE
Passed in DE register if a WORD

Two Parameters: Passed in E register if a BYTE
Passed in D register if a BYTE

If more than 2 parameters need to be passed, then a dedicated
data structure is implemented.

4.2.1

4.2.1.1

DOS CALLS - SEGMENT HANDLING

SEGMENT HANDLING ROUTINES

INTRODUCTION

The IOS provides the mechanism for interfacing with the data and
programs that are found on the broadcast cycle. All data or code
(program> which can be loaded at one time forms what is called a
segment. Segment loads can be of varying size ~rom a few bytes
up to the NPC's available free RAM space. (By usLng segment load
offsets, the application can manipulate data segments of much
larger size.>

The interface that IOS provides is composed of two components.
The first is that we provide DOS entry points which perform
different segment handling functions. The second is that the IOS
contains a data structure called the segment control/status
block. This block of data is the place where data is passed to
the segment handler and where data is received from the segment
handler.

The following section will describe the theory or specification
that the segment handler obeys. Following that are examples of
how a programmer could use the segment handling functions.

4.2.1.2 SEGMENT CONTROL AND STATUS BLOCK

The IOS contains a data structure called segment control/status
block. This block is used to pass information to and from the
segment handler. This block resides inside the IOS and not in
the application work space.

The programmer gains access to address of this block using DOS
call 87H. By using a template of the control block as described
below, the block can be modified as needed.

--
Spec. 50-90020490 Page 2 - 10 June 8, 1984

•

•

•

•

•

•

DOS CALLS - SEGMENT HANDLING

CONTROL/STATUS BLOCK

STATUS I

'----- -----BYTES TRANSFERRED! LS MS
I

OPTIONS ~------

1
SEGMENT ADDRESS 1-~M~S----- ---------~--L-S ____ __

I ________ --------- ------
BUFFER POINTER I LS MS

I ______ ------
BUFFER SIZE I LS MS

I _________ ------
CONDITIONS I

I ________ -------~~~----
OFFSET I LS MS I

Where:

STATUS:

I · I

is a one byte variable
is an output variable set by segment handler
indicates the status of the segment operation as:

1 busy doing operation
0 operation finished with no error

MINUS NUMBERS operation finished with error

BYTES TRANSFERRED

Spec. 50-90020490

-1 tier not authorized
-2 segment buffer overflowed
-3 adaptor did not respond in time and

segment handler timed-out
-4 segment contained a bad packet
-5 communication protocol failed between

adaptor and P.C.

is a two byte variable least significant
byte first
is an output variable set by segment
handler
indicates number of bytes transferred
into segment buffer

Page 2 - 11 June 8, 1984

DOS CALLS - SEGMENT HANDLING

OPTIONS

If:

SEGMENT ADDRESS

RAM POINTER

bit 0=0

bit 0=1

bit 2=0

bit 2=1

bits 3-7

Spec. 50-90020490

is a one byte variable
is an input variable initialized by the
application prior to segment operation
indicates information on how segment is
to be loaded:

control is returned immediately back to
calling program after segment operation
has started •

control is returned back to calling
program after operation is finished.

data segments will be loaded into RAM.

data segments will be loaded into VRAM.

are reserved and should be 0.

Is a 3 byte variable, most significant
byte first.

Is an input variable provided by the

•

application, normally based on •
information from the directory.

Indicates the segment identity to be
loaded.

This will be a number from 3 to 7FFFFFH.

Is not required for
operations.

all segment

Is a 2 byte variable, least significant
byte first.

Is an input variable provided by the
application.

Indicates where the segment or the
status information is to be loaded.
This would be some area inside the
application or in VRAM.

Is not required for loading segments
where segment contains its load
address.

Page 2 - 12 June 8, 1984 •

•

•

•

RAM SIZE

CONDITIONS

DOS CALLS - SEGMENT HANDLING

Is a 2 byte variable, least significant
byte first.

Is an input variable provided by the
application.

Indicates size of buffer in bytes: as
pointed to by buffer pointer.

Only required if buffer pointer is
required.

Returned. Can be ignored.

OFFSET This value (3 bytes) represents the num
ber of bytes, from the besinnins of the
data segment, to ignore when loading the
segment <an offset to the first loadable
byte). Ensure that this is zeroed if you
do not wish an offset.)

4.2.1.3 DOS INTERFACE

The segment handler performs operations
control block being correctly initialized,
to a DOS entry point.

based on the segment
and a call being made

*** NOTE *** In order for the segment loader IOS to properly
interface with the Adaptor, the application
program must NOT be within an interrupt protected
area of code when making segment handler requests.
Interrupts must be enabled and this implies that
the call to the segment handler does not occur
inside of a CRBEG - CREND code block.
C See "Interrupt Structure and Tasking Support"
for more information on CRBEG, CREND and
"Critical Regions". J

Spec. 50-90020490 Page 2 - 13 June 8, 1984

DOS CALLS - SEGMENT HANDLING

The DOS call is made by initializing
location s. The following calls
applications.

register C and "calling"
will be the ones used

IF

REG c = SOH Segment handler is reset
REG c = 84H Segment is loaded and

interpreted if necessary
REG c = S7H Base address of control

block is read

All parameters passed and returned are made through SEGCST.

SEGMENT HANDLER IS RESET Call Number SOH

to
by

When this operation is invoked, any pending segment operation is
ignored and the adaptor is reset to a known state. The segment
control/status block does not have to be initialized because it
is not used by this operation.

SEGMENT IS LOADED AND INTERPRETED IF NECESSARY. Call Number S4H

This operation attempts to load in a segment as indicated by

•

segment address in the control block. If the segment is loaded, •
the segment header may be interpreted to help with the load
address and the location where execution of code is to begin or
continue. If the load is unsuccessful, error information is
returned in the status byte.

LOADING A DIRECTORY-ONLY SEGMENT

The control block requires that:

Options = 01 or 00
Segment address contains the number of a directory segment
Ram pointer and Ram size are not used

The segment will be loaded into the directory area inside IOS.
The previous directory will be overwritten and the IOS will be
notified that a new directory is present. The code-to-load field
in the segment header will have been 000000 indicating that this
directory has no code associated with it. After the directory
has been loaded in, control is returned to the calling program.

Spec. 50-90020490 Page 2 - 14 June S, 19S4 •

DOS CALLS - SEGMENT HANDLING

... LOADING A CODE SEGMENT:

I

•

•

The control block requires that:

Options = 01 {or 00}
Segment address contains the number code sesment
Buffer pointer and buffer size are not used

The segment is loaded. The segment header contains the load
address where the code is to be loaded. It also contains the
start address where execution begins in the code after it has
successfully loaded. Just prior to execution beginning in the
newly loaded code, initialization occurs. The stack pointer is
set to just below IOS, all attached tasks are removed, and the
keyboard and clock interrupts are enabled.

LOADING A DIRECTORY WITH CODE-TQ-LOAD

The control block requires that

Options = 01
Segment address contains the number of the directory segment
Ram pointer and Ram size are not used

The directory portion of the segment is loaded into the IOS
directory area. Then the code-to-load field in the segment
header is checked. If the value is FFFFFFH, then a code segment
complete with header will immediately follow the directory in
this same segment. If the value is not 0 and not FFFFFFH, then
the code segment specified by the value is loaded in.

LOADING IN A DATA SEGMENT

The control block requires that:

Options = 01 or 00
Segment address contains the number of the data segment
Ram pointer contains the pointer to the area where the

data is to be written
Ram size contains the size of the area where data is to be

written
Offset is set to the number of bytes to ignore in the segment

before loading (usually OJ.

The data is loaded into the buffer as specified. After the data
has been loaded control is passed to the calling program .

Spec. 50-90020490 Page 2 - 15 June 8, 1984

I

DOS CALLS - SEGMENT HANDLING

LOADING IN A OVERLAY SEGMENT:

The control block requires that:

Options = 1 or 00
Segment address contains the number of the overlay segment
Ram pointer and Ram size are not used

The overlay is loaded in at the load address specified by the
segment header. After the segment has been loaded, control is
returned to the calling program.

BASE ADDRESS OF SEGMENT CONTROL/STATUS BLOCK IS READ.
Call Number 87H

The application is returned to the base address of the control
block in the HL register pair. This will allow the programmer to
place a template of the control block at that address in order to
initialize the block as required.

4.2.1.4 SEGMENT HEADERS

Each segment requires some overhead to describe what the segment

•

contains. The extra data is called a segment header. •

Segment headers have differing lengths. The minimum size of a
header is 2 bytes long and the maximum size is 255 bytes.

The first byte of each header always contains the length of the
header (2-255) in number of bytes.

The second byte of each header always contains the segment type.
Four types of segments are currently defined:

Type 0
Type 1
Type 2
Type 3

= Directory segment with or without
= Code segment
= Data segment
= overlay segment

code-to-load

--
Spec. 50-90020490 Page 2 - 16 June 8, 1984 •

•

•

•

DOS CALLS - SEGMENT HANDLING

DIRECTORY SEGMENT HEADER

LENGTH I

I

TYPE 00 I

I

ENTRY WIDTH I

I

NUMBER OF ENTRIES I
I

CODE-TO-LOAD MS I LS
I

NAAE LENGTH I
. I

NAME I

I

Entry width is the width of the directory entries. Each
directory entry has the same width. The width has a minimum size
of 10 and maximum size of 255. (See section on directory calls.)

Number of Entries is the number of directory entries. This value
could have a minimum of one and maximum of 255. However since
the maximum directory is 1000 bytes, the product of entry width
and number of entries must not exceed 1000.

Code-to-load is the field which indicates if code is to be
loaded, and where this code can be found. If this value is
FFFFFFH, then code follows the directory. All other values
indicate the segment number of the code segment.

Name length is the number of characters in the name of this
directory segment. The minimum is 1 byte and maximum is
255 bytes.

Name is the actual ASCII name of this directory segment •

--Spec. 50-90020490 Page 2 - 17 June 8, 1984

DOS CALLS - SEGMENT HANDLING

CODE SEGMENT HEADER

LENGTH 8

TYPE 1

LOAD ADDRESS MS LS

START ADDRESS MS LS

Load Address is a 3 byte variable, most significant byte first,
which tells the segment handler where to place the code.
currently the first byte is always 0.

Start Address is a 3 byte variable, most significant byte first,
which indicates where execution begins. Currently the first byte
is always 0.

DATA SEGMENT HEADER

LENGTH 2

TYPE 2

This header is the shortest one. Its purpose is to notify the
segment loader that it is a data segment.

OVERLAY SEGMENT HEADER

LENGTH 5

TYPE 3

LOAD ADDRESS MS LS

Load Address is the address at which this overlay is to be
loaded. It is a 3 byte variable, most significant byte first.
Currently the first byte is always 0.

Spec. 50-90020490 Page 2 - 18 June 8, 1984

•

•

•

•

•

•

DOS CALLS - SEGMENT HANDLING

4.2.1.5 EXAMPLES

In order to help illustrate the calls to the segment handler,
examples written in assembler are included. They are arranged in
some order from least difficult to more difficult.

>>>> ABORTING A SEGMENT LOAD <<<<

SCENERIO:

CODE:

The program has requested a large data segment,
and decides that the data is not required. The
segment load is aborted.

LD
CALL

C, SOH
s

>>>> RESET SEGMENT LOAD DEVICE <<<<

SCENERIO:

CODE:

Although it is not required, a program may choose
to reset the segment load device prior to loading
a segment.

LD
CALL

C, SOH
s

Spec. 50-90020490 Page 2 - 19 June S, 19S4

DOS CALLS - SEGMENT HANDLING

>>>> LOAD A DATA SEGMENT <<<<

SCENARIO:

CODE:

LCB:
STATUS:
BYTES:
OPTIONS:

SEG ADR:
RAM PTR:
RAM SIZE:
CONDIT:
OFFSET:
BASE:
START:

The program has determined that it needs to load
data segment "tax-table". It has searched through
its directory and found that "tax-table" is data
segment no. 000234H. The table is to be loaded at
location 8000H. Buffer is 1200H bytes long.

DB 0
ow 0
DB 1

DB 00,02H,34H
ow 8000H
ow 1200H
DB 0
DB 0,0,0
ow 0
LD C, 87H

CALL 8
LD (basel, HL
EX DE, HL
LD HL, LCB
LD BC,BASE-LCB
LDIR

LD c, 84H
CALL 8

LD HL, (basel
LD A, (HL)
CP 0

create a local
control block

; return control after load
; finished

segment no.= 234
; buffer pointer

buffer size = 1200
; condition byte (returned)

load from beginning of segment
value of base address

; get base address of segment
block

temp. storage
DE=PTR to IOS control block
HL=PTR to local control block

; t of bytes to move

. ,
IOS control block initialized

load data file

check for error
restore base address
read status
if status = 0
then no errors occured

Spec. 50-90020490 Page 2 - 20 June 8, 1984

•

•

•

DOS CALLS - SEGMENT HANDLING

• »» LOAD AN OVERLAY SEGMENT <«<

•

•

SCENERIO:

CODE:

LCB:
STATUS:
BYTES:
OPTIONS:

SEGADR:
RAM PTR:
RAM SIZE:

BASE:

START:

The program requires that an overlay be loaded and
a subroutine in the overlay executed. Overlay
segment number is 54321 Hex.

local control block
DB 0
DW 0
DB 1 return control after load

finished
DB 5H, 43H,21H seg number = 54321
DW 0 ; don't care
DW 0 ; don't care

DW 0 storage for base address

LD C, 87H . get base address ' CALL 8

LD (BASEl, HL ; temp • storage

EX DE, HL ; move local block
LD HL, LCB to IOS block
LD BC, 7
LDIR
LD c, 84H ; load overlay segm
CALL 8

LD HL, (BASEl check status
LD A, (HL)

CP 0 if status NE 0
JR NZ, ERROR then go to error

CALL SUBROUTINE else do subroutine

Spec. 50-90020490 Page 2 - 21 June 8, 1984

DOS CALLS - SEGMENT HANDLING

>>>> LOAD A CODE SEGMENT <<<<

SCENARIO: A code segment is to be loaded in and executed.
If an error occurs, during loading, execution is
to re-boot the system. Segment number is 1234H.

CODE: LCB: local control block
STATUS: DB 0
BYTES: DW 0
OPTIONS: DB 0 return control

immediately
SEG ADR: DB 0, 12H, 34H seg no. 1234
RAM PTR: DW 0 don't care
RAM SIZE: DW 0 don't care

START: LD c, 87H ; get base address
CALL 8

EX DE, HL move local block
LD HL, LCB to IOS
LD BC, 7
LDIR ;

LD C, 84H load code segment
CALL 8

JP 0 ; error occurred, reboot

>>>> LOADING A DIRECTORY SEGMENT WITH NO CODE TO LOAD. <<<<

Example is identical to loading an overlay segment.

>>>> LOADING A DIRECTORY SEGMENT WITH CODE TO LOAD. <<<<

Example is identical to loading a code segment.

Spec. 50-90020490 Page 2 - 22 June 8, 1984

•

•

•

•

•

•

4.2.2

4.2.2.1

DOS CALLS - DIRECTORY ROUTINES

DIRECTORY ROUTINES

INTRODUCTION

Each application which requires segments off the cable will have
a segment directory loaded into memory. The segment directory
will be stored as a lK buffer as part of the IOS. Each entry of
the directory will contain information about one segment being
transmitted on the cable.

This section describes the format of the directory in memory, and
the method that applications use to access information in the
directory.

4.2.2.2 FORMAT OF DIRECTORY

The segment directory is stored in a lK buffer in the IOS. The
format of the information in the buffer is as follows:

I
DIRECTORY I

SEGMENT I
I HEADER I
1---------------1
I ENTRY 1 I
1---------------1
I ENTRY 2 I
1------------- I

1---------------1
I ENTRY n I

The DIRECTORY SEGMENT HEADER is the standard segment header as
described in section 4.2.1.2.3. Following the header, are a
number of entries, one entry per segment in the directory •

Spec. 50-90020490 Page 2 - 23 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

Each directory entry has the following format:

I TIPE
1-------------------
1 ~NU

1-------------------
r

I
I

TIER LEVEL

SEGMENT ADDRESS

NAME

1-------------------
1

I RESERVED
I I ________________ _

1 BYTE

1 BYTE

4 BYTES

3 BYTES

18 BYTES

4 BYTES

TYPE and OWNER are each one byte values that are currently
undefined in the NABU NETWORK. TIER LEVEL is a four byte value
which gives the tier access information of the segment, each bit
corresponding to a different tier level. The SEGMENT ADDRESS is
a three byte value which gives the address number of the segment
on the cable. This three byte value is the number that must be
put into the SEGMENT ADDRESS of the SEGMENT CONTROL AND STATUS
BLOCK when a request is made to load the segment off the cable
(see section 4.2.1).

The NAME of the segment is given by the applications programmer
when submitting the segment to the APS. It can be up to 18
characters long. In the directory entry the name is left
justified and right padded with blanks. In most cases the
application will know the name of the segment to be loaded, and
search through the directory to find the segment address in order
to request the segment off the cable.

The last four bytes of each directory entry are reserved for
system use and should not be used by the application.

Spec. 50-90020490 Page 2 - 24 June 8, 1984

•

•

•

•

•

•

DOS CALLS - DIRECTORY ROUTINES

4.2.2.3 ACCESSING THE DIRECTORY

Multi-Segment applications require a means of loading overlays or
data. The segment loader requires that a segment number or
address be present in the segment control block. The user
directory contains the information which links the segment name
with the segment address. This directory is loaded into an IOS
directory area. This is an internal lK buffer.

An application has one DOS calls available for accessing the
directory: the routine to search through the directory for a
particular entry.

DIRECTORY SEARCH
PURPOSE: To search
PARAMETERS PASSED:

DOS CALL 88H
for a particular entry in the directory.
c Register - 88H
DE Register - Address of a Directory

Search Block (see below).
PARAMETERS RETURNED: All information returned is done so in

the Directory Search Block as described
below.

DATA STRUCTURES: The Directory Search Block is a data
structure declared by the application and passed to the
IOS when the directory search call is made. the
Directory search Block has the following format:

--
Spec. 50-90020490 Page 2 - 25 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

I MATCH PATTERN I 1 BYTE • 1-----------------1
I ENTRY WIDTH I 1 BYTE
(-----------------(

TYPE I 1 BYTE
-----------------1

OWNER I 1 BYTE

TIER LEVEL 4 BYTES

SEGMENT ADDRESS 3 BYTES

NAME (ENTRY WIDTH) - 9 BYTES

The MATCH PATTERN is set by the calling application and is •
used to indicate which fields in the directory entry are to
be searched for. The meaning of each of the bits in the
MATCH PATTERN byte is as follows:

S I x I x I N I L I T I 0 I Y I

I __ match TYPE
match OWNER
match TIER LEVEL
match SEGMENT ADDRESS
match NAME
not used
not used
0 => search for first
1 => search for next

--
Spec. 50-90020490 Page 2 - 26 June 8, 1984 •

•

•

•

DOS CALLS - DIRECTORY ROUTINES

If the N, L, T, 0 or Y bits are set in the SEARCH BLOCK,
this indicates that the corresponding fields of the search
block are to be matched with the directory entry. For
example, if the application wished to search for a segment
with the name COSMOS, it would set the N bit, and reset the
L, T, o, and Y bits. If the application wished to search
for a segment with the name COSMOS ang with owner 33, it
would set the N and 0 bits, and reset the L, T, and Y bits.

The S bit of the match pattern indicates whether to search
for the first directory entry which matches, or the next
directory entry after the last search.

The ENTRY WIDTH gives the number of bytes in
block following the ENTRY WIDTH byte. It is
compute the number of characters in the NAME.

the search
required to

The fields TYPE, OWNER, TIER LEVEL, and NAME correspond to
the fields in the directory entry. The application will set
these fields if it wishes to search the directory for a
corresponding entry. For example, if the application wished
to search for a segment with owner 33, it would set OWNER to
33; if it wished to search for a segment called NEUTRON BOMB
it would set NAME to 'NEUTRON BOMB'.

When matching on NAME the application can use "wildcard"
features. A '?' with the high bit set (i.e., OBFHl will
match any single character in the corresponding position.
For example if NAME is two bytes long and is set to 41H,
OBFH, the directory search routine will match Al, A2, AN, or
any other segment whose name starts with A. A '*' with the
high bit set (i.e., OAAHl will match any string in the
corresponding position. For example if NAME is two bytes
long and is set to 41H, OAAH, the directory search routine
will match on A, AA, Al, Al2, Al23, AAASSSDDD, or any
segment name beginning with 'A'.

The matching of the tier level fields is done in the same
manner as the tier authorization match in the Adaptor. That
is the two fields are ANDed together. If the result is non
zero then there is a match •

Spec. 50-90020490 Page 2 - 27 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

All values returned to the calling application are done so ...
in the SEARCH BLOCK in the following manner:

-If the search was successful the MATCH PATTERN is set
to OFFH by the search routine.

-If the search failed then the MATCH PATTERN is set to
0 by the search routine.

-If the search was successful, then the TYPE, OWNER,
TIER LEVEL, SEGMENT ADDRESS, and NAME fields are filled
in to correspond to the entry in the directory that was
found.

The following are a few examples of how the directory
search routines work.

:Read in a segment named BOMBAST
:
;Search the directory for the first entry with the name BOMBAST

LD A,lOH
LD (MATCH_PATTERNJ,A

LD A,23
LD (ENTRY_WIDTH) ,A

LD HL,SEGNAME
LD DE,NAME
LD BC,l4
LDIR

LD C,88H
LD DE,SEARCH_BLOCK
CALL 8

LD A,(MATCH_PATTERN)
OR A
JP Z,NOT_FOUND

:Search for first occurrence.
:Match on name.

:Set entry width

:Copy BOMBAST into NAME field.

;Call IOS to search the directory.

:was search successful?

:Search was successful. Read in segment.
:segment address is in SEG_ADDR

CALL READSEG

Spec. 50-90020490 Page 2 - 28 June 8, 1984

•

•

•

•

•

DOS CALLS - DIRECTORY ROUTINES

;Read in second segment in directory which begins with the
;letter 'A' and is owned by 69. This will require doing two
;directory searches; one for the first occurence; and one
;for the next occurence.

LD A,l2H
LD (MATCH_PATTERN),A

LD A,23
LD (ENTRY_WIDTH) ,A

LD A, I A'
LD (NAME) , A

LD A, OAAH
LD (NAME + 1) ,A

LD B,l2
LD A, I I

LD HL,NAME + 2

BLANK: LD (HL) , A
INC HL
DJNZ BLANK

LD C,88H
LD DE,SEARCH_BLOCK
CALL 8

;Find first occurence.
;NAME and OWNER.

;Set ENTRY_WIDTH to 23

Match on

;First character of NAME is 'A'.

;Wildcard feature

;Blank out remainder of NAME

;Call directory search

;Search for first is done. If successful then search for next.
LD A,(MATCH_PATTERN)
CP 0
JR z,NOT_FOUND ;Was search successful

LD
LD

LD
LD

LD
LD
LD

A,92H
(MATCH_PATTERN),A

A,OAAH
(NAME + 1) ,A

B,l2
A, I I

HL,NAME + 2

;Search for next occurence of
;NAME and OWNER

;Wildcard feature

--Spec. 50-90020490 Page 2 - 29 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

BLANKl: LD (HLl,A
INC HL
DJNZ BLANKl

LD C,88H
LD DE,SEARCH_BLOCK
CALL 8

LD A,(MATCH_PATTERNl
CP 0
JR Z,NOT_FOUND
;Read in the segment
CALL READSEG

SEARCH_BLOCK:
MATCH_PATTERN:
ENTRY_WIDTH:
TYPE:
OWNER:
TIER_LEVEL:
SEG_ADDR:
NAME:

DS
DS
DS
DS
DS
OS
OS

1
1
1
1
4
3
14

;Blank out remainder of NAME

;Call directory search

------------Spec. 50-900;~~;~---
Page 2 - 30 June 8, 1984

•

•

•

•

•

•

DOS CALLS - INTERRUPTS AND TASKING

4.2.3 The Interrupt Structure and Tasking Support

4.2.3.1 Introduction

Because of the Real-Time requirements of the NABU P.C., some
sort of real time operating support is required. Because of
the overhead involved in context switching and maintaining
task descriptors and the questionable utility to
applications programs, full multi-tasking is not supported.
Instead, a modified forground/background tasking approach is
used. The application program runs as the foreground task,
and is in complete control of the NPC. The application
program may also call IOS routines which run in the
foreground, and may also start other tasks running in the
background. The application program may also use IOS
routines to start applications tasks running in the
background.

The background tasks are always started by the occurance of
interrupts and must "run to completion". The NPC supports
eight vectored, maskable, nestable, priority interrupts.
Each interrupt has an interrupt service routine or "system
task" associated with it. Some of the interrupts may also
have one or more "user tasks" associated with it. These
"user tasks" will start after the system task for the given
interrupt has completed. The NPC interrupts in order of
priority are:

1. NNI Receive
-activated when a character is received from

the NNI
-system task for packet/segment reception

handling attached to this interrupt
-No user tasks may be attached

2. NNI Send
-activated when a character has been sent from
the NPC to the NNI (Transmitter Buffer Empty)

-System task for packet/segment reception handling
attached to this interrupt

-No user tasks may be attached

3. Human Interface Input
-activated when a character has been received

from the remote keyboard

--Spec. 50-90020490 Page 2 - 31 June 8, 1984

4.

s.
6.
7.
a.

DOS CALLS - INTERRUPTS AND TASKING

Video Frame Sync (60 Hz Clock)
-activated every 1/60 sec by start of
vertical retrace on the TMS 9918A Video Disp~ay

-System task to: flash cursors, update real t~me
clock, etc. etc attached to this interrupt

-System task to timeout on NNI response attached to this
interrupt

-Any number of user tasks may be attached.

Option card Interrupt from Slot No. 0
Option Card Interrupt from Slot No. 1
Option Card Interrupt from Slot No. 2
Option Card Interrupt from Slot No. 3

Option card Interrupts
-activated by option cards
-one system task per card may be attached

as required
-one user task per card may be attached

4.2.3.2 Critical Regions

For the purposes of the IOS, a critical region is defined as
a section of executable code, or data structure which may be

•

accessed by only one concurrently executing task at a time. •
Critical regions are bound to exist in any system which
supports more than one concurrently executing task.

Two IOS BOS calls are used to protect critical regions in
the IOS and in applications programs. When entring a
critical region, an application task must call the routine
"CRITICAL REGION BEGIN". This is call number 02 in the IOS
BOS and Its assembly language name is CRBEG. It takes no
parameters. When leaving the critical region the routine
"CRITICAL_REGION_END" must be called. This is call number 03
in the !OS BOS and its assembly language name is CREND. No
registers are destroyed by these calls.

Critical regions are nested by CRBEG and CREND. This nesting
is analogous to opening a left bracket for each CRBEG that
is performed and closing the critical region with a ri~ht

bracket ~ach ~ime a CREND is performed. In this way it is
easy ~o.v~sual~~e that one may have a critical region within
a cr~t1ca~ reg1~n and that interrupts will only be enabled
whe~ the f1na1 r1ght bracket (CRENDl is reached. It is also
obv1ous. that there must be as many CRENDs as there are
CRBEGs 1n order to keep the interrupt control in order.

•

•

•

•

DOS CALLS - INTERRUPTS AND TASKING

Since all interrupts are disabled inside critical regions,
they MUST be kept as SHORT as possible.

*** NOTE ***
Attempting to interface with the segment handler while

in a critical region, may yield unpredictable results.
Avoid this situation.

It is also strongly recommended that applications not
use the EI and DI assembler instructions for critical
region protection. Use the IOS CRBEG I CREND routines
instead. (See BOS Calls. l

DOS CALLS - INTERRUPTS & TASKING - CLOCK

4.2.3.3 user Task Attachment Routines

4.2.3.3.1 Attaching Tasks to the Clock

VAR

An application program may attach tasks to the TMS-9918A VDP
frame interrupt. As many tasks as desired may be attached.
Tasks may be attached and removed from the clock by both the
main application program and by other tasks. In fact a task
may remove itself from the clock. It is also possible to have
multiple invocations of the same piece of code as separate
tasks.

BEFORE CLOCK-ATTACHED TASKS ARE EXECUTED, ALL REGISTERS
ARE SAVED, AND THEY ARE RESTORED AFTER THE COMPLETION OF
THE TASK.

A data structure called a TASK_CONTROL_BLOCK (TCB) is used
to keep track of the relevent parameters of a task which is
attached to the clock. The TCB has the following structure:

TASK_CONTROL_BLOCK: RECORD OF
BEGIN

NEXT_BLOCK
RESET_INTERVAL
CURRENT_ INTERVAL
TASK_ADDRESS
PARAMETER_BLOCK

WORD
BYTE
BYTE
WORD
USER_DEFINITION l

The NEXT_BLOCK word is used by the operating system to place
the TCB on a linked list with other TCB's. This word should
not be altered by applications tasks at any time.

The CURRENT_INTERVAL byte counts the number of ticks that
have gone by since the last time the task was activated It
is ~cce~sed by the IOS but may also be accessed by
appl1cat1ons tasks. The IOS algorithm in which this byte is
used is as follows:

--Spec. 50-90020490 Page 2 - 34 June 8, 1984

•

•

•

•

•

•

DOS CALLS - INTERRUPTS & TASKING - CLOCK

ON EACH CLOCK INTERRUPT DO
BEGIN

FOR EACH TASK_CONTROL~BLOCK DO
BEGIN

END.

CURRENT_INTERVAL = CURRENT_INTERVAL - 1;
IF CURRENT_INTERVAL = 0 THEN DO

BEGIN

END
END

CURRENT_INTERVAL := RESET_INTERVAL;
RUN_THIS_TASK(TASK_ADDRESS);

The byte CURRENT_INTERVAL is decremented every clock tick
until it equals zero. When CURRENT_INTERVAL = 0, the task is
executed. Therefore an INTITIAL DELAY may be issued before
the task is dispatched by initializing CURRENT_INTERVAL to a
value greater than one. Before execution of the task,
CURRENT_INTERVAL is reset to the value of RESET_INTERVAL.
CURRENT~INTERVAL is measured in clock ticks which are approx
1/60 of a second long. For example a value of 5 means the
task will every 5/60 of a second and a value of 1 means the
task will run every 1/60 of a second or 16 milliseconds.

NOTE: That initializing CURRENT_INTERVAL to zero will
cause the task to be delayed for 256 clock ticks
(approx 4 seconds) before it is executed a first
time.

The CURRENT_INTERVAL byte can be used to determine when a
task has last run or when a task will next run. It will also
determine when a newly created task will next run.

The RESET INTERVAL byte is the value to which the byte
CURRENT_INTERVAL is initialized to after RESET_INTERVAL has
been decremented to zero. This byte is never changed by the
operating system, but can be changed for purposes of
changing the re-execution time of an active task.

The TASK_ADDRESS word contains a pointer to the start o! tn~
~ask or user s~broutine. When control is given to the
~nterrupt subrout~ne, the pointer to the TASK CONTROL BLOCK
(TCBl is in the.BC register so that the user may access any
of the bytes ~n the TCB and modify them if he so desires.
NOTE also that this pointer is useful for accessing vari
ables (bytes or words) immediatly below the 6 byte
TASK_CONTROL_BLOCK •

DOS CALLS - INTERRUPTS & TASKING - CLOCK

Also note that an interrupt subroutine or task should always
end with a RETURN (RET) statement in order to return control
to the application's mainline and never jump out of a user
task otherwise interrupts will remain permantly disabled.
Interrupt subroutines should also always be as short as
possible and never take longer than 16 milliseconds (1 CLOCK
TICK) to execute. If it should be neccessary to run a task
that takes longer than 16 miliseconds, it should be broken
up into two tasks which execute on alternate interrupts. To
do this start one task immediatly and delay the second
task one clock tick by setting CURRENT_INTERVAL
initially to two.

The PARAMETER_BLOCK is an optional data structure which may
be accessed by an applications task. When a task is started
the address of the TASK_CONTROL~BLOCK (ie a pointer to the
NEXT_BLOCK word) is passed in the BC Register. This gives
the task access to its own TCB. Using the parameter block to
keep all of the task's data will allow several
instantiations of the same code as separate tasks without
resorting to keeping data on stack frames.

There are a few important calls which should be mentioned at
this point, because tasks may not run if they are not done.

•

A call must be done at the start of every program to link in •
the BOS routines so that calls to CRBEG and CREND will work.
(See section on BOS Calls for information on linking BOS
routines using DOS call 90H.l

ex:
MAIN::

LD C,90H
LD DE,LNKTB##

CALL DOS

;DOS CALL 90H
;ADDRESS OF
;LINK TABLE
;CALL SYSTEM

A call must be done to CLKPRM (BOS CALL #37) should be done
to enable user task dispatching when the user is ready to
have the tasks dispatched.

ex: LD C,4 ;CONSIDER CLOCK
;TASK
;DISPATHING BIT

LD E,4 ;SET BIT #2 TO
;TURN ENABLE
;TASK DISPATCHING

CALL CLKPRM## :NOW TASKS WILL
;RUN IF INTERRUPTS
;ARE ENABLED

--
Spec. 50-90020490 Page 2 - 36 June 8, 1984 •

•

•

•

DOS CALLS - INTERRUPTS & TASKING - CLOCK

NB: a call to CLKPRM should be used instead of a call to
CRBEG if the user wishes to disable ALL tasks for a long
period of time. Because a call to CRBEG will disable ALL
interrupts, and not only user tasks.

The IOS DOS Routines which support attaching and removing
clock tasks are as follows:

CLOCK_USER_TASK_ATTACH (DOS call number 8BH)
-used to attach a user task to the clock ISR
-entry parameters:

C Register: 8B Hex
DE Register: Pointer to a Task Control Block

CLOCK_USER_TASK_REMOVE (DOS call number 8CH)
-used to remove a user task from the clock ISR
-entry parameters:

C Register: 8C Hex
DE Register: Pointer to a Task Control Block

Note that
which may
tasks, or
interrupts

If DE = 0, then all tasks are removed

although there is no limit to the number of tasks
be attached to the clock, attaching too many
attaching long running tasks may cause clock

to be lost •

DOS CALLS - INTERRUPTS & TASKING - CLOCK

EXAMPLE • This routine demonstrates attaching and removing tasks.

DOS EQU
COUNT: DB

CNTTCB:
DW
DB
DB
DW

MAINLINE::

DRIVER::

0008 ; DOS ENTRY POINT
0 ;Data byte incremented every 5/60

;a second by interrupt subroutine
;COUNTER
;TASK_CONTROL_BLOCK

0 ;point to next block = NIL
5 :RESET_INTERVAL
100 ;INITIAL_DELAY Of 100 ticks
COUNTER ;Interrupt subroutine

LD C,90H ;LINK_BOS_ROUTINE
;call number

LD DE,LNKTB#i ;address of user
;LINKTABLE

CALL DOS ;call location 8

LD C,08BH
LD DE, CNTTCB
CALL DOS

LD A, {COUNT)
CP 100
JP NZ,DRIVER

LD A,O
LD {COUNT),A
LD C,8CH
LD DE,CNTTCB
CALL DOS

JP DRIVER

;SOME MORE MAINLINE CODE

;C REG = 08BH = CLOCK_USER_ATTACB,
;DE REG = ADDRESS of TCB
;CALL location 8 to attach task
;Now task is ATTACHED!! •

;MORE MAINLINE SETUP

;MAINLINE DRIVER
;get count in A reg.
;Is count = 100?
;NO. Then wait till
;COUNT = 100
;YES. count = 100 so
;then res~t count to 0
;USER_TASK_REMOVE
;TCB ADDRESS
;Now counting task will
;no longer and the byte
;COUNT will no longer be
;incremented.
;and do forever.

COUNTER: ;USER'S INTERRUPT SUBROUTINE
;get current count
;increment count

Spec. 50-90020490

LD A, {COUNT)
INC A
LD (COUNTJ 1A
RET

;store new count
;return to mainline.

Page 2 - 38 June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - KEYBOARD

4lt 4.2.3.3.2 Keyboard user Tasks

•

•

The IOS DOS c.all 95H will permit tasks to be attac.hed to the
keyboard. The user passes, in the DE registers, a pointer
to a table whose format is as follows:

I Number of
I Entries (Byte) I

I
ENTRY U

ENTRY 4!2

ENTRY in

I
I

I
I
\

Charac.ter Code (Byte>

I SYM Key Qualifier (Byte)

Pointer to
User Routine (Word)

The c.harac.ter c.ode is the c.ode sent by the
Joystic.k data is ignored. The SYM key qualifier
when the task is to be performed as follows:

keyboard.
indic.ates

bit 0 =

0 =

bit 1 =
1 =

0 then do not exec.ute user routine when SYM
key is down.

1 then exec.ute user routine when SYM key is
down.

0 then do not execute user routine when SYM
key is up.

1 then exec.ute user routine when SYM key is
up.

The user's routine must end with a RET to prevent disaster.

If a user's routine is to be exec.uted, then all normal
proc.essing of the key code received is superseded. This
means the key will not be put in the queue and the PAUSE and
TV/NABU keys will not be processed - only the user routine
will be performed. A number of tasks may be attac.hed to the
same keyboard input c.ode. This allows the application the
option of having different tasks exec.ute based on the
condition of the SYM key qualifier for the same keyboard
input c.ode.

Attac.hing
This is
allow the

a task to the SYM key may produc.e unusual results.
due to the fact that the attac.hed task will not
SYM key to execute in the proper manner •

--Spec.. 50-90020490 Page 2 - 39 June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - KEYBOARD

WARNING - When attaching tasks to the keyboard that will ~
attempt to write to the video control register
ensure that no other foreground or background
task is using the video routines FASTLD and
FASTDU (and their 256 byte cousins) as they allow
keyboard interrupts to occur.

To remove the keyboard task table in its entirety from the
keyboard, DOS call 95H is performed with the DE registers
set to zero.

Spec. 50-90020490 Page 2 - 40 June 8, 1984

•

•

•

•

•

DOS CALLS - INTERRUPTS & TASKING - EXPANSION SLOTS

4.2.3.3.3 EXPANSION SLOTS

Expansion slots in the NABU PC will be used to allow a number of
different option cards to be added. There are four expansion
slots in each PC. The option cards send an identification (idl
code to a port at the option slot. The NABU PC picks up the ids
by specifying the hex value COH for slot 0, DOH for slot 1, EOH
for slot 2, and FOH for slot 3. Since there can be so many
different cards which can be installed in the NABU PC, and
different configurations of these cards in the slots, it is not
reasonable to include drivers for each option card in IOS.

The solution is to have the application identify the cards
installed in the expansion slots, and have interrupt service
routines which will handle the option cards.

To find out what is in the
(GET_CONFIG) can be made.
the C register. This call
tion block in registers HL.
lows;

expansion card slots, a DOS call 94H,
The input parameter is 94H passed in

returns the address of the configura
The format of the block is as fol-

CONFIGURATION BLOCK
STRUCTURE (IOS_VERSION_NO

IOS_LEVEL_NO
RESERVED
SLOT_O_CONTENTS
SLOT_l_CONTENTS
SLOT_2_CONTENTS
SLOT_3_CONTENTS

END STRUCTURE

BYTE,
BYTE,
WORD,
BYTE,
BYTE,
BYTE,
BTIE l

An interrupt
slot interrupt
directly.

service routine can then be attached to an option
letting the application deal with the option card

DOS call 8DH is the Slot Interrupt Service Routine
entry parameters are:

reg C: 8DH
reg DE: pointer to ISR Control Block

Attach. The

where the ISR Control Block contains
byte 1 - slot number <CO,DO,EO, or FO cor-

re~ponding to slots 0,1,2 or 3)
byte 2,3 - po~nter to start of interrupt

service routine.

The address of th ISR ·
by the !OS. e ~s placed into the interrupt V€Ct0[tabl9

Spe~:-;~=;~~;~~;~---
Page 2 - 41 June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - EXPANSION SLOTS

Des call 8EH is the Slot Interrupt Service Routine Remove.
The parameters that must be passed to this routine are:

Reg
Reg

C = 8EH
E = Slot number (CO,DO,EO,FO

slots 0 to 3).
corresponding to

This routine disables interrupts from the slot and then removes
the address of the ISR from the interrupt vector table.

The applications programmer must know the identification codes
which are sent by the different option cards which the
application will be using. The programmer must also initialize
the interrupt hardware on the option card (if applicable).

--Spec. 50-90020490 Page 2 - 42 June 8, 1984

•

•

•

DOS CALLS - HUMAN INPUT DEVICES

... 4.2.4 HUMAN INPUT

4.2.4.1 INTRODUCTION

•

This section explains how keyboard and joystick data may
accessed through the !OS.

4.2.5.2 SPECIAL KEY OPERATION

be

~everal K~yg h~~~ ~pecial reserved functions and the Ios
and handles these keys:

traps

EXIT OPERATION:
PAUSE OPERATION:
TV/NABU SWITCH:
SYM OPERATION:

The Exit Operation simply consists of jumping to location OOOOH.
This will cause a system re-boot to occur. (See also the section
on XIOS.l

The Pause operation stops the execution of the applications
program. A LED on the NPC front pannel is turned on to indicate
that the NPC is in Pause mode. While paused, only the SYM, EXIT,
and PAUSE operations are interpreted. All other keys and human
interface inputs are ignored. Pause mode is quit either by the
reset operation or by another pause operation.

The TV/NABU switch is used to switch between the external video
input and the NPC generated video. When the NPC is booted NPC
video is switched in. When the NPC is powered off, the hardware
ensures that the external video is switched in. At any time when
the NPC is operating the TV/NABU switch may be used to switch
between computer generated and external video sources.

For details as to what keycodes constitute the EXIT, PAUSE,
TV/NABU and SYM operations, see TABLE 1.

The IOS handles all SYM key operation. See section 4.2.5.5
for more information.

--
Spec. 50-90020490 Page 2 - 43 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

•
PUT CHARACTER CODE TABLE HERE

•

Spec. 50-90020490 Page 2 - 44 June 8, 1984 •

DOS CALLS - HUMAN INPUT DEVICES

~ 4.2.4.3 OBTAINING DATA FROM THE KEYBOARD

The keyboard device driver has two entry points which are set up
as standard serial device drivers. They are as follows:

The routine nHUMAN_INPUT: DEVICE_READYn can be called to see if a
particular keyboard device has data available. This call returns
0 if nothing is ready and some non-zero value if there is a
character ready. Note that the keyboard unit only sends joystick
data if the value changes from the previous reading. Also, the
keyboard unit nde-bouncesn digital joystick data. This means that
if HUMAN_INPUT: DEVICE_READY returns TRUE for a particular joy
stick port, the value for that device is guaranteed to have
changed.

The parameter passing for the human interface is as follows:

HUMAN_INPUT: DEVICE_READY (call number AOH)
-returns a data ready indication for a specified human

interface input
-entry parameters:

C Register: AO Hex
E Register: device location to be checked

-returned value:
A Register: 00 if device not ready

~ non-zero value if device is ready

HUMAN_INPUT: GET_DATA (call number AlH)
-gets a data byte from a specified human interface input
-see section 3.3.7.1
-entry parameters:

C Register: Al Hex
E Register: device location to get data from

-returned value:
A Register: data input from human input device

~ ;~~~~-5a:9aa2o49o---------------------------------------········
Page 2 - 45 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

Both routines pass the device location in the E register.
following device locations are defined:

The

OOH -Reinitializes the keyboard device driver by
making all devices "not ready" <throws away any
ready datal (Works with DEVICE_READY onlyl

OlH -Keyboard
02H -Joystick 1
03H -Joystick 2

FFH -returns the base address of the
current SYM key re-definition
table. (returns address in HL)
(Works with DEVICE_READY only)

The values returned from DOS call Al are either joystick data,
or keyboard data.

Joystick data uses the first five bits of the byte to
determine the joystick's new change of direction.

17161514131211101

direction
left
down
right

---------------- up
---------------------- fire button

not used
------------------------------ not used

not used

Keyboard data is sent as single 8 bit bytes, usually in an ASCII
format. There are however function keys which transmit special
byte values. Table 1 should be consulted.

Spec. 50-90020490 Page 2 - 46 June 8, 1984

•

•

•

DOS CALLS - HUMAN INPUT DEVICES

4lt 4.2.4.4 set SYM Table

•

•

The IOS performs all SYM key decoding. A 128 character look-up
table, is maintained if it has been defined by an application
program and passed to the IOS. Any key which is NOT release coded
may have its meaning changed by holding down the SYM key while
the key is pressed. A new key-code is chosen by doing a look-up
in the re-definition lookup table. The resulting value is then
passed on to the application program. If the SYM key is pressed
when there is no defined redefinition table, then the ASCII value
of the key pressed with the high bit set is passed on to the
application program.

SYM key re-definition is NOT performed on any key which is
release coded. Release codes are sent onto the application by the
device handler. It is up to the application to ignore them if
they are not desired.

The call SET_SY~TABLE (call number 91H) is used to set the SYM
redefinition table base address. The base address of the
redefinition table is passed as a parameter. If the address
passed is OOOOH then any redefinition table currently in use is
freed, and the new redefinition consists of setting the high bit
in the ASCII code. The format of this call is as follows:

SET SYM TABLE (call number 91H)
- -used to set the SYM key Redefinition table

-entry parameters:
C Register: 91 Hex
DE Register: Pointer to new SYM key table

where the SYM KEY TABLE has
following format:

the

128 Entries each one byte long
Entry 0 contains the

redefinition code of
keyboard input code 0 when
SYM key is down. The
redefinition code is placed
in the keyboard buffer or
queue.

the
of

1 when

Entry 1 contains
redefinition code
keyboard input code
SYM key is down.

--
Spec. 50-90020490 Page 2 - 47 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

Entry 7FH contains

-returned value:
HL Register: Old SYM key table

redefinition code
keyboard input code 1
SYM key is down.}

the
of

when

The SYM Key Redefinition table is 128 bytes long. The
contents of this table are used to redefine or
translate the received ASCII character <values 0 to
7FH) into a different ASCII character. For example,
if the first entry in the table is 7FH (delete
character), and an ASCII 0 (ctrl @) is received, the
CTRL @ will be replaced with the delete character.
See TABLE 1 for the Keyboard ASCII Code Chart.

•

•

•

DOS CALLS - VIDEO SCREEN DEVICE DRIVER

• 4.2.5 Video Screen Device Driver

•

•

In keeping with the standard for physical device drivers,
two entry points are provided for the Video Screen Device
Drivers. These are as follows:

VIDEO_SCREEN: DEVICE_:_READY (call number A2H)
-returns a data ready indication for the video screen driver.
-entry parameters:

C Register: A2 Hex
-returned value:

A Register: 00 if device not ready
non-zero value if device is ready

VIDEO_SCREEN: SEND_DATA (call number A3Hl
-writes a character to the specified window
-entry parameters

C Register: A3 Hex
D Register: data to be output

-returned value:
A Register: 00 if device not ready

non-zero value if data was sent

-It will handle control characters: carriage return, line
feed, delete, backspace, form feed, and horizontal tabs.
The routine puts the character at the current cursor
position. Bit 7 is stripped off each ASCII character by
"anding" with 7FH prior to displaying. It will interpret
the control characters as follows:

LINE FEED: CONTROL J
If the cursor is on the bottom line of the window, the
window will scroll up one line and leave the bottom
line filled with SPACES and the cursor will drop
straight down into this blank line. If the cursor is
in the middle of the window, the cursor just drops
down one line.

CARRIAGE RETURN: CONTROL M
The cursor will
current line.

move to the first position of the

BACKSPACE: CONTROL H
The cursor moves back one position.
in the top-left position of the
happens •

If the cursor is
window, nothing

--
Spec. 50-90020490 Page 2 - 49 June 8, 1984

DOS CALLS - VIDEO SCREEN DEVICE DRIVER

DELETE: 7FH ~
The cursor backspaces one character and places a SPACE
over the character.

FORM FEED: CONTROL L
The cursor is reset to the top-left position of the
window and the window is filled with SPACES.

BELL: CONTROL G
A short tone will sound.

VERTICAL TAB: CONTROL K
The cursor moves up one line. If the cursor is on the
top-most line, nothing will happen.

HOME: CONTROL A

The cursor is reset to the top-left position of the
window.

OTHER CONTROL CHARACTERS:
Nothing will happen.

Spec. 50-90020490 Page 2 - 50 June 8, 1984

•

•

DOS CALLS - PRINTER OUTPUT

4lt 4.2.6 Printer Output

4lt

4lt

The printer output devices allow for data to be sent to a printer
connected to the personal computer. There are two calls
available.

DOS call
data. A
ready.

OA4H determines whether the printer is ready to receive
non zero value will be returned if the printer is not

DOS call DASH will perform wait until the printer is ready and
then send the data to the printer. The appropriate register
values for the DOS calls A4 and AS are:

PRINTER_OUTPUT: DEVICE_READY (call number A4Hl
-returns a printer ready indication
-entry parameters:

C Register: A4 Hex
E Register: device location to be checked

-returned value:
A Register: 00 if device not ready

non-zero value if device is ready

PRINTER_OUTPUT: SEND_DATA (call number ASH)
-writes a character to the printer
-entry parameters:

C Register: AS Hex
E Register: Device location where data is to be

sent
D Register: Data to be output

EXAMPLE

The following Z80 assembler example demonstrates how to print a
form feed on a printer.

FF EQU

START:

oc

LD C,OA4H
LD D,FF
LD E,02H
CALL 0008
RET

;PRINTER OUTPUT
;LOAD THE DATA TO BE DISPLAYED
;THE PRINTER IS DEVICE NUMBER 2
;PRINT THE CHARACTER. IOS ENTRY

--·-········
Spec. S0-90020490 Page 2 - 51 June 8, 1984

DOS CALLS - IO ROUTING

4.2.7 IIO ROUTER

4.2.7.1 Physical Device Identification

The physical devices are referred to by their
location rather than their function. The
diagram indicates how a single byte is used to
a physical device in the NPC:

physical
following
identify

I x I 1 I 1 I 1 I n I n I n I n I

-------------- DEVICE_NUMBER
indicates the particular device
number at a device location.
Device number 0 is reserved.
Numbering should start at 1
and increase sequentially.
A particular device number
can indicate either an input
or an output device, but NOT
both.

---------------------------- DEVICE_LOCATION

For x=O
000 -at keyboard I/F
001 -at TMS9918A
010 -at Printer
011 -at Sound Generator
100 -at NNI I/F

For x=l
000 -at expansion slot 0
001 -at expansion slot 1
010 -at expansion slot 2
011 -at expansion slot 3

BOARD LOCATIONS

IF x=
0
1

-on processor board
-on expansion bus

Physical devices are deemed by the NPC IOS to be one of two
"sexes". These are serial-oriented and packet-oriented.
~~rial-oriented devices are dealt with one character at a
~me. These are devices such as the TMS-9918A, the KEYBOARD

and the PRINTER.

•

•

•

•

•

•

DOS CALLS - IO ROUTING

Packet oriented devices are dealt with a block of data at a
time. Packets have a particular protocol associated with
them and are generally associated with mass storage devices
such as the NNI and floppy disks.

4.2.7.2 Logical Device Identification

The following logical devices are defined:

KEYBOARD:
SCREEN:
LIST:
READER:
PUNCH:

(input portion of CONSOLE)
(output portion of CONSOLE)
<output>
Cinput device)
(output device)

4.2.7.3 I/O Routing Entry Point

0
1
2
3
4

Assignments of physical devices to logical devices are
performed by using the I/O Router Entry Point. This call
only allows serial-oriented physical devices to be attached
to Logical devices. Mass-storage devices are handled
through the Segment Loader Interface. The ATTACH entry point
has the following format:

I/O_ROUTER: ATTACH
-attaches a particular physical
file to a logical device

-entry parameters:
C Register: SA Hex
E Register: PHYSICAL~DEVICE
D Register: LOGICAL~DEVICE

(call number BAH)
device or mass storage

Where LOGICAL~DEVICE is the byte value of a logical device
as identified in the section above and PHYSICAL~DEVICE is
the byte value of a physical device, as identified above.
This call will cause all subsequent I/0 to the logical
device to be performed by the physical device attached. This
call is available in the DOS •

spec. 50-9002049o Page 2 _ 53 -----------;~~~-8~-i~ei

DOS CALLS - IO ROUTING

•

THIS PAGE LEFT INTENTIONALLY BLANK

•

Spec. 50-90020490 Page 2 - 54 June 8, 1984 •

BOS CALLS

• 4.3 Basic Operating Software (BOSl

•

•

This level of the operating system provides the key operating
control software for the NABU P.C •• It interfaces to the I/0
handlers, the Downloadable Operating Software and application
programs.

BOS Routines may be linked to the applications program at run
time by using the IOS DOS call number 90H (LINK_BOS_ROUTINES).

The application program is written with a jump table, with one
entry in the table for each low level BOS routine accessed. Each
entry is 3 bytes long. The exact structure is:

TYPE
ANENTRY: TYPE ARRAY[l •• Jl OF BYTE;

VAR
BOS_LINK_TABLE: RECORD OF

LENGTH:
ENTRY [1. . LENGTH]

END;

The exact format of the !OS DOS call is:

BYTE;
AN ENTRY;

LINK_BOS_ROUTINES (call number 90H)
-used to link BOS Routines to an
application program

-entry parameters:
C Register: 90 Hex
DE Register: Pointer to a BOS_LINK_TABLE

-is not re-entrant

The first byte of each entry contains the number of the BOS
routine to be linked to. When the LINK_BOS_ROUTINES call is made,
the !OS will go through the link table, placing the appropriate
absolute jump instruction into each entry to link it to the
desired routine. The application program can then jump directly
through the link table to the desired routine.

Example:

Be f or e .oo.s_ .c.a.ll .2..QH Aft e r .OO.S. .!&ll .2..QH

LNKTAB: DB 2 ;2 entries DB 2
DB 02H ;BOS Call - CRBEG JP
DW 0 <CRBEG>
DB 03H ;BOS Call - CREND JP
DW 0 <CREND>

Spec. 50-90020490 Page 3 - 1 June 8, 1984

BOS CALLS

• The BOS routine numbers (HEX) are assigned as follows:

00 VREGRD 01 VTABRD
02 CRBEG 03 CREND
04 VREGWR OS VSTATR
06 VNAMET 07 VCOLRT
08 VPTRNT 09 VSATRT
OA VSPRST OB VBLKON
oc VBLKOF OD VRAMRD
OE VRAMWR OF FASTL8
10 FASTLD 11 FASTD8
12 FASTDU 13 VRAML8
14 VRAMLD 15 VRAMD8
16 VRAMDU 17 SPMARK
18 SPMOVE 19 SPCOLR
IA SPNAME lB RPATRN
lC LPATRN ID CHADR
IE VFILL IF XYLOC
20 PUT PAT 2I GETPAT
22 SETMSG 23 PUTMSG
24 GETMSG 25 VSETTX
26 VSETGI 27 VSETG2
28 VSETSP 29 MUL88
2A- 34 Reserved • 35 AUDRD
36 AUDWR 37 CLKPR
38 HOINT 39 CREGW
3A VMOVI 3B VMOVD
3C FASTRD 3D FASTWR
3E SETMK

Spec. 50-90020490 Page 3 - 2 June 8, I984 •

BOS CALLS

• The BOS calls use several dedicated data structures. They are
defined as follows and are referred to in the specific BOS
routines.

•

•

The MESSAGE_CONTROL_BLOCK consists of :

X LOCATION on screen
Y LOCAT!ON on screeen
LENGTH OF MESSAGE
DATA TO BE WRITTEN

(byte.>
(byte)
(byte)
(byte<sll

The PATTERN~DEFINITION_TABLE consists of:

i OF ENTRIES IN TABLE
BLOCK 1
BLOCK 2

BLOCK N

EACH BLOCK CONTAINS:
i OF PATTERN ;1 BYTE

;1 BYTE
;character 1
;character 2

;character N

PATTERN DEF. ;8 BYTES WICH REPRESENT THE DEFINITION •

--
Spec. 50-90020490 Page 3 - 3 June 8, 1984

BOS CALLS

ROUTINE NAME: AUDRD

FUNCTION:
Read the audio chip

DESCRIPTION:
This routine
The register
returned in A

reads from the GI complex sound generator.
to be read is passed in C and the data is

PARAMETERS PASSED:
C Reg: Number of sound register to be read

PARAMETERS RETURNED:
A Reg: Value of sound register read

REGISTERS USED:
Flags, A, C
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 35 - Re-entrant

COMMENTS AND WARNINGS:
This call can be used by the application program to read
the current status of the audio chip's registers. There
are fourteen audio registers uses by the application. For
more information on the audio chip, see Section 3.3.

RELATED ROUTINES:
AUDWR - write to the audio chip

Spec. 50-90020490 Page 3 - 4 June 8, 1984

•

•

•

BOS CALLS

• ROUTINE NAME: AUDWR

•

•

FUNCTION:
Write to the audio chip

DESCRIPTION:
This routine writes to the GI complex sound generator used
by the NABU PC. The register to be written to is passed in
C and the data to be written is passed in E. The routine
prevents writes to registers OE or OF.

PARAMETERS PASSED:
C Reg: Number of sound register to be written to
E Reg: Data to be written

PARAMETERS RETURNED:
NONE

REGISTERS CLOBBERED:
A, C, E, Flags
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 36 - Re-entrant

COMMENTS AND WARNINGS:
This routine writes to a specified register within the
audio chip. Fourteen registers are used for sound
generator. For more information on programming sound see
section 3.3.

RELATED ROUTINES:
AUDRD - read from the audio chip

Spec. 50-90020490 Page 3 - 5 June 8, 1984

BOS CALLS

ROUTINE NAME: CHADR

FUNCTION:
Return VRAM address for a particular pattern

DESCRIPTION:
This routine will return the VRAM address for a particular
pattern in a pattern table. The pattern number is passed
in the C register, the address returned in the HL pair.
The base address of the pattern table is passed in DE.

PARAMETERS PASSED:
c = pattern number
DE = base address of PATTERN_DEF_TAB

PARAMETERS RETURNED:
HL = address of pattern

REGISTERS USED:
BC,HL
Stack use = 2 bytes

ROUTINE TYPE GLOBAL - BOS No. lD - Re-entrant

COMMENTS AND WARNINGS:
This routine allows the application to obtain the exact
address in Video RAM (VRAM), where a given character
resides. It is assumed that the pattern table has
already been defined and the base address is known by the
application.

RELATED ROUTINES:
VPTRNT
VRAMLD

Spec. 50-90020490

- set pattern table base address
- load Video RAM

Page 3 - 6 June 8, 1984

•

•

•

BOS CALLS

~ ROUTINE NAME: CLKPR

~

•

FUNCTION:
Change processing of real time clock functions

DESCRIPTION:
This routine is used to control processing of real time
functions. Three functions may be controlled - clock user
task handling, screen driver cursor flashing and real time
clock updating.

These functions may be turned on or off at will by the
applications program. This might be done to get more
processor resources, or to get special control of these
functions. Each function is controlled by a bit in a
control word as shown below:

I X I X I X I X I X I t I f I c I

I I
I I Real Time Clock
I I
I I ------- Cursor Flashing
I I
I I ----------- Clock Task Dispatching
I I
~------~-------1

----------------------- Not used

PARAMETERS PASSED:
E Reg: Data to indicate state to set

1 = process 0 = turn off
C Reg: Mask Data. Bits in E which are to actually

be considered are set in the mask.

PARAMETERS RETURNED:
A Reg: New value of control word

REGISTERS USED:
A, c, Flags
4 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 37 - Re-entrant

COMMENTS AND WARNINGS:
Of course altering real time processing can cause problems.
Use with caution!

Spec. 50-90020490 Page 3 - 7 June 8, 1984

BOS CALLS

ROUTINE NAME: CRBEG

FUNCTION:
Critical region begins (disable interrupts)

DESCRIPTION:
This routine is used to delineate the beginning of a
"critical region". A critical region is any section of code
which, because it uses software timing, accesses data used
by another task, or is not reentrant and can be called by
more than one task, must run with interrupts disabled. Note
that critical regions must be made as short as possible, or
keyboard strokes and clock ticks may be lost.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
None
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 2 - Re-entrant

COMMENTS AND WARNINGS:
All interrupts are disabled by this call. Long
regions may result in loss of clock ticks or
data.

critical
keyboard

NOTE: 1. critical regions may be nested safely about 100
deep.

2. the number of CRENDs must match the number of
CRBEG's

RELATED ROUTINES:
CREND - critical region ends

Spec. 50-90020490 Page 3 - 8 June 8, 1984

•

•

•

BOS CALLS

4lt ROUTINE NAME: CREGW

•

•

FUNCTION:
Write to the hardware control register

DESCRIPTION:
This routine is used to write the control register port in
the NABU P.C. The control register port is a write-only
register with the following format:

I x I x I y I r I g I d I v I m I

ROM Select

Video Switch

Data Strobe (printer)

Green Front Panel LED (Check)
Red Front Panel LED (Alert)
Yellow Front Panel LED (Pause)

--------------------------- NOT USED

------------------------------- NOT USED

PARAMETERS PASSED:
E Reg: Data to be Written to Port
C Reg: Mask Data. Bits in E which are to actually

be written are set in the mask.

PARAMETERS RETURNED:
A Reg: New value of control register

REGISTERS USED:
A, C, Flags
4 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 39 - Re-entrant

COMMENTS AND WARNINGS:
Altering anything other than the Video Switch and the yellow
and green alerting LED may cause a small disaster. Use with
care.
Toggling the Video switch allows the application to switch
the signal to the T.V. from the television broadcast to the
video chip output and back again •

Spec. 50-90020490 Page 3 - 9 June 8, 1984

BOS CALLS

ROUTINE NAME: CREND

FUNCTION:
Critical region ends

DESCRIPTION:
This routine is used to delineate the end of a "critical

region". A critical region is any section of code which,
because it uses software timing, accesses data used by
another task, or is not reentrant and can be called by more
than one task, must run with interrupts disabled. Note that
critical regions must be made as short as possible, or
keyboard strokes and clock ticks etc. may be lost. A CREND
must be used to end a critical region started by a CRBEG.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
None
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3 - Re-entrant

COMMENTS AND WARNINGS:
See "Critical Regions" in the section "DOS Calls

Interrupts and Tasking."

NOTE 1. critical regions may safely be nested 100
deep.

2. the number of CREND's must match the number of
CRBEG's.

RELATED ROUTINES:
CRBEG - critical region begins

--
Spec. 50-90020490 Page 3 - 10 June 8, 1984

•

•

•

BOS CALLS

• ROUTINE NAME: FASTDS

•

•

FUNCTION:
Read a string of bytes from the VRAM.

DESCRIPTION:
This routine is used to read a string of bytes from the
VRAM. The length of the data to be read is passed in reg
BC and the memory address where the data is to be placed
is passed in reg DE. The start address in VRAM is passed
in HL. Since 16 bit pointers are used, anywhere from 0 to
16K of data may be transfered with this routine. The
entry point FASTD8 may be used if the length of data is
less than 256 bytes and the length is passed in the C reg
only. This routine keeps interrupts (except keyboard
interrupts) disabled for the duration of the VRAM dump.
This makes the dump very fast, but susceptable to loss of
clock ticks or other interrupts.

PARAMETERS PASSED:
C Reg: Length of data block to be read

DE Reg: Start of area to dump to in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 11 - Re-entrant

COMMENTS AND WARNINGS:
This routine keeps interrupts (except
disabled for a long period of time.
lost!

keyboard interrupts)
Interrupts may be

RELATED ROUTINES:
FASTDU - fast dump
VRAMDS - dump Video RAM (up to 256 bytes)
VRAMDU - dump Video RAM

--
Spec. 50-90020490 Page 3 - 11 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTDU

FUNCTION:
Read a string of bytes from the VRAM.

DESCRIPTION:
This routine is used to read a string of bytes from the
VRAM. The length of the data to be read is passed in reg
BC and the memory address where the data is to be placed
is passed in reg DE. The start address in VRAM is passed
in HL. Since 16 bit pointers are used, anywhere from 0 to
16K of data may be transfered with this routine. This
routine keeps interrupts (except keyboard interrupts)
disabled for the duration of the VRAM dump. This makes the
dump very fast, but susceptable to loss of clock ticks or
other interrupts.

PARAMETERS PASSED:
BC Reg: Length of data block to be read
DE Reg: Start of area to dump to in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 12 - Re-entrant

COMMENTS AND WARNINGS:
This routine keeps interrupts (except
disabled for a long period of time.
lost!

keyboard interrupts)
Interrupts may be

This will affect tasks attached to the clock, and software
timing if a very large number of bytes are being read.

RELATED ROUTINES:
FASTD8 - fast dump (less than 256 bytes)
VRAMD8 - Video RAM dump (less than 256 bytes)
VRAMDU - Video RAM dump

--
Spec. 50-90020490 Page 3 - 12 June 8, 1984

•

•

•

BOS CALLS

• ROUTINE NAME: FASTL8

•

•

FUNCTION:
write a string of bytes to the VRAM.

DESCRIPTION:
This routine is used to write a string of bytes to the
VRAM. The length of the data to be written is passed in
reg BC and the memory address of the start of the data is
passed in reg DE. The start address in VRAM is passed in
HL. Since 16 bit pointers are used, anywhere from 0 to 16K
of data may be transfered with this routine. The entry
point FASTL8 may be used if the length of data is less
than 256 bytes and the length is passed in the C reg only.
This routine keeps interrupts (except keyboard interrupts)
disabled for the duration of the VRAM load. This makes
the load very fast, but susceptable to the loss of clock
ticks or other interrupts.

PARAMETERS PASSED:
C Reg: Length of data block to be written

DE Reg: Start address of data block in RAM
HL Reg: Destination of data in VRAM

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. OF - Re-entrant

COMMENTS AND WARNINGS:
This routine keeps
rupts) disabled for a
be lost!

RELATED ROUTINES:
FASTLD - fast load

interrupts (except
long period of time.

VRAML8 - load Video RAM <up to 256 bytes)
VRAMLD - load Video RAM

keyboard inter
Interrupts may

--
Spec. 50-90020490 Page 3 - 13 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTLD

FUNCTION:
Write a string of bytes to the VRAM.

DESCRIPTION:
This routine is used to write a string of bytes to the
VRAM. The length of the data to be written is passed in
reg BC and the memory address of the start of the data is
passed in reg DE. The start address in VRAM is passed in
HL. Since 16 bit pointers are used, anywhere from 0 to 16K
of data may be transfered with this routine. This routine
keeps interrupts (except keyboard interrupts) disabled for
the duration of the VRAM load. This makes the load very
fast, but susceptable to the loss of clock ticks or other
interrupts.

PARAMETERS PASSED:
BC Reg: Length of data block to be written
DE Reg: Start address of data block in RAM
HL Reg: Destination of data in VRAM

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 10 - Re-entrant

COMMENTS AND WARNINGS:
This routine keeps
ruptsl disabled for a
be lost!

interrupts (except
long period of time.

keyboard inter
Interrupts may

This will affect tasks attached to the clock, and software
timing if a large number of bytes are being read.

RELATED ROUTINES:
FASTL8 - fast load (less than 256 bytes)
VRAML8 - load Video RAM (less than 256 bytes)
VRAMLD - load Video RAM

Spec. 50-90020490 Page 3 - 14 June 8, 1984

•

•

•

BOS CALLS

... ROUTINE NAME: ASTRD

•

...

FUNCTION:
Read a single byte of data from TMS9918A VRAM - unprotected

DESCRIPTION:
This routine is used to read a single byte of data from
TMS9918A VRAM. The address to be read is passed in reg BC,
the value of the VRAM at that location is returned in reg A.
This routine is not protected using the CRBEG and CREND
routines.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be read from

PARAMETERS RETURNED:
A Reg: Contents of VRAM at Location

REGISTERS USED:
A,F
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3C - Re-entrant

COMMENTS AND WARNINGS:
USE AT YOUR OWN RISK!!

RELATED ROUTINES:
FASTWR
VRAMRD
VRAMWR

- fast write of one byte to Video RAM
- read one byte from Video RAM
- write one byte to Video RAM

Spec. 50-90020490 Page 3 - 15 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTWR

FUNCTION:
Write a single byte of data to TMS9918A VRAM - unprotected

DESCRIPTION:
This routine is used to write a single byte of data from
TMS9918A VRAM The address to be written is passed in reg BC.
The data to be written is passed in Register E. This
routine is not protected using the usual CRBEG and CREND.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be written to
E Reg: Data to be written

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3D - Re-entrant

COMMENTS AND WARNINGS:
USE AT YOUR OWN RISK!!

RELATED ROUTINES:
FASTRD
VRAMRD
VRAMWR

- fast read of one byte of Video RAM
- read one byte from Video RAM
- write one byte to Video RAM

Spec. 50-90020490 Page 3 - 16 June 8, 1984

•

•

•

BOS CALLS

• ROUTINE NAME: GETMSG

•

•

FUNCTION:
Get message from screen

DESCRIPTION:
GETMSG
pointer

gets a string of patterns from the screen.
to a MESSAGE_CONTROL_BLOCK is passed in reg BC.

PARAMETERS PASSED:
BC = pointer to message control block

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 24 - Re-entrant

COMMENTS AND WARNINGS:

A

The message control block is set up in RAM by the
application program •

RELATED ROUTINES:
PUTMSG - put message on the screen

Spec. 50-90020490 Page 3 - 17 June 8, 1984

BOS CALLS

ROUTINE NAME: GETPAT

FUNCTION:
Get pattern number for any X-Y location on screen

DESCRIPTION:
GETPAT gets a pattern number from a specific X-Y location
on the screen. The pattern number is returned in the A
register, the X location passed in the C register, and the
Y location passed in the E register.

PARAMETERS PASSED:
C = X location
E = Y location

PARAMETERS RETURNED:
A = pattern number

REGISTERS USED:
A,BC,DE,HL
Stack use = 6 bytes

ROUTINE TYPE GLOBAL - BOS No. 21 - Re-entrant

COMMENTS AND WARNINGS:
NOTE: The screen must be set up already. i.e. pattern
table, sprite tables, colour table, and attribute table.

RELATED ROUTINES:
PUTPAT - put a pattern on the screen.

Spec. 50-90020490 Page 3 - 18 June 8, 1984

•

•

•

•

•

BOS CALLS

ROUTINE NAME: HOINT

DESCRIPTION:
Initializes systems on the NABU PC. Calls all initializa
tion routines for all devices and drivers, sets the control
register of the NABU PC, and initializes the interrupt
mask.

PARAMETERS PASSED: None.

PARAMETERS RETURNED: None.

REGISTERS CLOBBERED: ALL

ROUTINE TYPE GLOBAL - BOS No. 38 - Re-entrant

COMMENTS AND WARNINGS:
This routine is not usually needed by an application
program •

Spec. 50-90020490 Page 3 - 19 June a, 1984

BOS CALLS

ROUTINE NA~IE: LPATRN

FUNCTION:
Load pattern definitions into VRAM memory

DESCRIPTION:
LPATRN loads pattern definitions into a VRAM pattern table.
The patterns to be loaded are put into a
PATTERN_DEFINITION_TABLE, which is described below. A
pointer to the PATTERN_DEFINITION_TABLE is passed in the BC
register. The base address of the pattern table is passed
in DE.

PARAMETERS PASSED:
BC = pointer to PATTERN DEF TAB
DE = Base address of table

REGISTERS USED:
A,B,C,D,E,F,H,L
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. lC - Re-entrant

COMMENTS AND WARNINGS:

This routine can be used to load pattern definitions from
RAM into Video RAM CVRAMl. The base address of the table
in VRAM to which the pattern definitions are going must
already be established i.e. base address set. The
pattern table, sprite definition table, and the colour
table can be loaded with this routine.

RELATED ROUTINES:
RPATRN - load pattern definitions for pattern table

Spec. 50-90020490 Page 3 - 20 June a, 1984

•

•

•

BOS CALLS

~ ROUTINE NAME: MUL88

~

~

FUNCTION:
Multiply two eight bit numbers

DESCRIPTION:
MUL88 multiplies two 8 bit numbers together to yield a 16
bit result. The numbers to be multiplied are passed in the
C and E registers, the answer is returned in both HL and BC

PARAMETERS PASSED:
C = multiplicand
E = multiplier

PARAMETERS RETURNED:
BC = result
HL = result

REGISTERS USED:
BC,DE,HL
Stack use = 0

ROUTINE TYPE GLOBAL - BOS No. 29 - Re-entrant

COMMENTS AND WARNINGS:
None

Spec. 50-90020490 Page 3 - 21 June 8, 1984

BOS CALLS

ROUTINE NAME: PUTMSG

FUNCTION:
Put message on screen

DESCRIPTION:
PUTMSG places text on the screen. A pointer to a
MESSAGE_CONTROL_BLOCK is passed in the BC registers.

PARAMETERS PASSED:
BC = pointer to message control block

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 23 - Re-entrant

COMMENTS AND WARNINGS:

This routine assumes that a graphics or text mode, and

•

pattern tables are defined. It also assumes that the •
pattern table loaded in Video RAM has an ASCII character
set loaded into the appropriate locations within the
pattern table.

RELATED ROUTINES:
GETMSG - get a message from the screen

--------------Spec. 50-90020~~~------------------------------
Page 3 - 22 -------------

June 8, 1984 •

BOS CALLS

~ ROUTINE NAME: PUTPAT

~

~

FUNCTION:
Put pattern at any X-Y location on screen

DESCRIPTION:
PUTPAT places
location on the
register, the
location in the

any pattern definition at a specific X-Y
screen. The pattern number is passed in L
X location in the C register, and the Y
E register.

PARAMETERS PASSED:
C = X location on screen
E = Y location
L = pattern number

PARAMETERS RETURNED:
None

REGISTERS USED:
BC,DE,HL
Stack use = 6 bytes

ROUTINE TYPE GLOBAL - BOS No. 20 - Re-entrant

COMMENTS AND WARNINGS:

The graphics or text mode
this routine is called.
set up (base addresses
loaded).

RELATED ROUTINES:

must already be defined before
The pattern tables must also be
set, and pattern definitions

GETPAT - get pattern number for an X-Y screen
location

;;;~~-5a=9ao2o49o _______________________________________ _
Page 3 - 23 -------

June 8, 1984

BOS CALLS

ROUTINE NAME: RPATRN

FUNCTION:
Load pattern definitions into screen pattern table

DESCRIPTION:
RPATRN loads pattern definitions into the screen's pattern
table. A pointer to a PATTERN_DEFINITION_TABLE is passed
in register BC. The PATTERN_TABLE address is assumed to be
at VPTRNAD.

PARAMETERS PASSED:
BC reg = pointer to PATTERN_DEF_TAB

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. lB - Re-entrant

COMMENTS AND WARNINGS:

•

It is assumed the base address of the pattern table •
(VPTRNADJ has already been set.

VPTRNAD is defined and set using BOS routine VPTRNST.

RELATED ROUTINES:
LPATRN - load pattern definitions into Video RAM

Spec. 50-90020490 Page 3 - 24 June 8, 1984 •

BOS CALLS

... ROUTINE NAME: SETMSG

...

•

FUNCTION:
Set up screen message

DESCRI?TION:
SETMSG sets up the VDP and all parameters according to a
MESSAGE_CONTROL_BLOCK. The user may then load or dump to
VRAM, and the patterns will be placed appropriately. The
pointer to the message control block is passed in the BC
register pair. The user should use VRAMLS or VRAMDS
immediatley after this.

THE A REGISTER CONTAINS THE TYPE OF SETMSG. 0 = FOR READ
1 = FOR WRITE

PARAMETERS PASSED:
BC = pointer to MESSAGE_CONTROL_BLOCK

PARAMETERS RETURNED:
C = Length of message
DE = Pointer to data to be read/displayed.
HL = VRAM address to read/write.

REGISTERS USED:
A,BC,DE,HL
Stack use = 6 bytes

ROUTINE TYPE GLOBAL - BOS No. 22 - Re-entrant

COMMENTS AND WARNINGS:

The routine PUTMSG is made up of SETMSG and VRAMLS. SETMSG
should be used by the application program for dumping VRAM
contents into RAM.

RELATED ROUTINES:
PUTMSG
VRAML8
VRAMDS

Spec. 50-90020490

- put message on the screen
- load up to 256 bytes into Video RAM
- dump up to 256 bytes into RAM

Page 3 - 25 June a, 1984

BOS CALLS

ROUTINE NAME: SETMSK

FUNCTION:
Write hardware interrupt control register and mask.

DESCRIPTION:
This routine is used to write or set the interrupt control
register port in the NABU PC. The control register is a
write-only register with the following bit format:

17161514131211101

PARAMETERS PASSED:
E Reg: Data to be written to the port.

Slot 4 Interrupt

Slot 3 Interrupt

Slot 2 Interrupt

Slot 1 Interrupt

Clock Interrupt

Keyboard Interrupt

Adaptor Tx Interrupt

Adaptor Rx Interrupt

C Reg: Mask Data. Bits in E that are to actually
be written are set in the mask.

PARAMETERS RETURNED:
A Reg: Previous value of the control register.

REGISTERS USED:
A, c, Flags
4+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3EH - Non Re-entrant

COMMENTS AND WARNINGS:
The implications of playing with the interrupt control
register are considerable. Use with caution.

Spec. 50-90020490 Page 3 - 26 June 8, 1984

•

•

•

BOS CALLS

4lt ROUTINE NAME: SPCOLR

•

•

FUNCTION:
Set the colour of a sprite.

DESCRIPTION:
This routine is used to set the colour of a sprite. The
sprite number is passed in register C and the new sprite
colour is passed in register E.

PARAMETERS PASSED:
C Reg: Number of sprite to change colour of
E Reg: Number of new colour

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 19 - Re-entrant

COMMENTS AND WARNINGS:

NOTE that the colour, the sprite location (SPMOVE) and
the sprite pattern (SPNAME) must all be called before a
sprite appears on the screen.

RELATED ROUTINES:
SPMOVE
SPNAME
SPMARK

- move sprite
- assign pattern definition to sprite
- mark last sprite

--
Spec. 50-90020490 Page 3 - 27 June 8, 1984

BOS CALLS

ROUTINE NAME: SPMARK

FUNCTION:
Mark the end of a sprite attribute table

DESCRIPTION:
This routine
table. The
sprite AFTER

is used to mark the end of a sprite attribute
number of the sprite to be marked (ie. the

the last sprite) is passed in the C register.

PARAMETERS PASSED:
C Reg: Number of sprite to be marked

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 17 - Re-entrant

COMMENTS AND WARNINGS:

NOTE: If a sprite pattern is defined on the sprite number
that was marked by this routine, the sprite mark is
effectively removed.

RELATED ROUTINES:
SPMOVE
SPCOLR
SPNAME

- move sprite
- set sprite colour
- assign pattern definition to sprite

--
Spec. 50-90020490 Page 3 - 28 June 8, 1984

•

•

BOS CALLS

~ ROUTINE NAME: SPMOVE

FUNCTION:
Move a sprite on the display.

DESCRIPTION:
This routine is used to move a sprite on the display. The
new X location is passed in L, the new Y location is passed
in E and the number of the sprite to be moved is passed in
register C.

PARAMETERS PASSED:
C Reg: Number of sprite to be moved
E Reg: New Y location
L Reg: New X location

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 18 - Re-entrant

~ COMMENTS AND WARNINGS:

~

This routine is also used to define the first location of
a sprite.
NOTE: The colour, and pattern must also be defined to
have the sprite appear on the screen.

RELATED ROUTINES:
SPMARK
SPCOLR
SPNAME

Spec. 50-90020490

- mark the last sprite being used
- set sprite colour
- set sprite pattern definition

Page 3 - 29 June 8, 1984

BOS CALLS

ROUTINE NAME: SPNAME

FUNCTION:
Set the pattern name associated with a sprite.

DESCRIPTION:
This routine is used to set the pattern name associated
with a sprite. The sprite number is passed in register C
and the new sprite pattern name is passed in register E.

PARAMETERS PASSED:
C Reg: Number of sprite to change pattern of
E Reg: Number of new pattern

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. lA - Re-entrant

COMMENTS AND WARNINGS:

•

NOTE: 1. The pattern name is the pattern which resides in •
the sprite pattern table in Video RAM.

2. The colour and the location of the sprite must
be defined before the sprite will appear on the
screen.

RELATED ROUTINES:
SPMARK
SPCOLR
SPMOVE

- mark the last sprite being used
- set the colour of the sprite
- set the location of the sprite

--
Spec. 50-90020490 Page 3 - 30 June 8, 1984 •

BOS CALLS

• ROUTINE NAME: VBLKOF

•

•

FUNCTION:
Unblanks <turns onl the TMS9918A video display.

DESCRIPTION:
This routine unblanks (turns onl the TMS9918A video
display. It requires no parameters.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A, BC, E, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. OC - Re-entrant

COMMENTS AND WARNINGS:
The definition of the screen, i.e. mode, patterns etc,
should be done before unblanking the screen. When a mode
is selected be it TEXT, GRAPHICS 1, or GRAPHICS 2, the
screen is "blanked" and remains blank until the VBLKOF
routine "unblanks" it.

RELATED ROUTINES:
VBLKON
VSETTX
VSETGl
VSETG2

- blank the video display
- set to TEXT mode
- set to GRAPHICS 1 mode
- set to GRAPHICS 2 mode

--
Spec. 50-90020490 Page 3 - 31 June 8, 1984

BOS CALLS

ROUTINE NAME: VBLKON

FUNCTION:
Blanks the TMS9918A video display.

DESCRIPTION:
This routine blanks the TMS9918A video display. It requires
no parameters. Blanking means all foreground colours and
sprites disappear from the screen. The background colour
remains.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A, BC, E, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. OB - Re-entrant

COMMENTS AND WARNINGS:

•

NOTE: The TV screen goes blank on calling this routine, •
but the definitions that have been set up in Video RAM
remain. To regain the image on the screen, use VBLKOF.

RELATED ROUTINES:
VBLKOF - unblanks the video display

Spec. 50-90020490 Page 3 - 32 June 8, 1984 •

BOS CALLS

~ ROUTINE NAME: VCOLRT

~

•

FUNCTION:
Set the colour table address in the TMS9918A.

DESCRIPTION:
This routine is used to set the colour table address in the
TMS9918A. The full colour table address is passed in reg
BC. This routine correctly writes the address into the 9918
reg 3 and stores the full colour table address in VCOLRAD
for use by other routines. This routine works in Graphics
II Mode by setting all the most significant bits as
required by the VDP

PARAMETERS PASSED:
BC Reg: Base Address of COLOUR Table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack

ROUTINE TYPE GLOBAL - BOS No. 7 - Re-entrant

COMMENTS AND WARNINGS:
The colour table must be set up for programs using
GRAPHICS 1 or GRAPHICS 2 •

--
Spec. 50-90020490 Page 3 - 33 June 8, 1984

•

•

•

BOS CALLS

ROUTINE NAME: VFILL

FUNCTION:
Fill a block of Video RAM with one character

DESCRIPTION:
This routine will fill any contiguous portion of VRAM with
a particular value. The value to fill with is passed in
the E register, the length to fill is passed in the BC
pair. The Address in VRAM is passed in HL

PARAMETERS PASSED:
BC = length to fill
E = value to fill with
HL = address in VRAM to start

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
4+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. lE - Re-entrant

COMMENTS AND WARNINGS:
This allows the application program, which resides in RAM,
to keep from having to define large tables in RAM
containing the same entry over and over again, and then
copying the table into Video RAM.
This routine can be used to pad out pattern tables with
the number for blanks or fill colour tables with one
combination of colours •

--
Spec. 50-90020490 Page 3 - 34 June 8, 1984

BOS CALLS

ROUTINE NAME: VMOVD

FUNCTION:
Quickly move data from one location in VRAM to another.

DESCRIPTION:
This routine will quickly move data from one location in
VRAM to another. The data area must be less than 255 bytes
long. The move is made by starting at the locations
specified and moving DOWN in VRAM

PARAMETERS PASSED:
C Reg: Amount of data to be moved in bytes
DE Reg: End Address where data is located
HL Reg: End Address where data is to be moved to

PARAMETERS RETURNED:
DE Reg: One before the beginning of the source data area
HL Reg: One before the beginning of the destination data area

REGISTERS USED:
A, BC, DE, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3B - Re-entrant

COMMENTS AND WARNINGS:
Calling this routine with C reg equal to zero will cause
256 bytes of data to be transferred. This routine disables
interrupts for the full data transfer. This may cause
interrupts to be lost.

NOTE: If the value in HL is
DE minus the value of c, then
number of bytes "clobbered" at
data being moved.

RELATED ROUTINES:

greater than the value
the difference will be
the start of the block

in
the
of

VMOVI - move data in Video RAM (incrementing from
given address>

Spec. 50-90020490 Page 3 - 35 June 8, 1984

•

•

•

•
BOS CALLS

ROUTINE NAME: VMOVI

FUNCTION:
Quickly move data from one location in VRAM to another.

DESCRIPTION:
This routine will quickly move data from one location in
VRAM to another. The data area must be less than 255 bytes
long. The move is made by starting at the locations
specified and moving UP in VRAM

PARAMETERS PASSED:
C Reg: Amount of data to be moved in bytes
DE Reg: Start Address where data is located
HL Reg: Start Address where data is to be moved to

PARAMETERS RETURNED:
DE Reg: One past the end of the source data area
HL Reg: One past the end of the destination data area

REGISTERS USED:
A, BC, DE, HL, Flags
4 bytes of stack used

• ROUTINE TYPE GLOBAL - BOS No. 3A - Re-entrant

•

COMMENTS AND WARNINGS:
Calling this routine with C reg equal to
256 bytes of data to be transferred. This
interrupts for the full data transfer.
interrupts to be lost.

zero will cause
routine disables
This may cause

NOTE: If the value in HL is less than the value in
plus the value of C, then the difference will be
number of bytes "clobbered" at the end of the block
data being moved.

DE
the
of

RELATED ROUTINES:
VMOVD - move data in VRAM {decrementing from given

address)

--
Spec. 50-90020490 Page 3 - 36 June 8, 1984

BOS CALLS

ROUTINE NAME: VNAMET

FUNCTION:
Set the pattern name address of the TMS9918A.

DESCRIPTION:
This routine is used to set the pattern name address of the
TMS9918A. The full pattern name address is passed in reg
BC. This routine correctly writes the address into the
9918 reg 2 and stores the full pattern name address in
VNAMEAD for use by other routines.

PARAMETERS PASSED:
BC Reg: 16 bit base address of NAME Table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 6 - Re-entrant

COMMENTS AND WARNINGS:
The mode that the
already be set, i.e.
The address should be

application is working in should
TEXT or GRAPHICS 1 or GRAPHICS 2.

set in accordance to the mode chosen.

RELATED ROUTINES:
VCOLRT
VPTRNT
VSATRT
VSPRST

Spec. 50-90020490

- set colour table base address
- set pattern table base address
- set sprite attribute table base address
- set sprite pattern table base address

Page 3 - 37 June 8, 1984

•

•

•

•
BOS CALLS

ROUTINE NAME: VPTRNT

FUNCTION:
Set the pattern table address in the TMS9918A.

DESCRIPTION:
This routine is used to set the pattern table address in
the TMS9918A. The full pattern table address is passed in
reg BC. This routine correctly writes the address into the
9918 reg 4 and stores the full pattern table address in
VPTRNAD for use by other routines. This routine works
correctly in GRAPHICS Mode II by setting all the most
significant bits to 1.

PARAMETERS PASSED:
BC Reg: Base Address of PATTERN Table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack

• ROUTINE TYPE GLOBAL - BOS No. 8 - Re-entrant

•

COMMENTS AND WARNINGS:
The mode that the application is working in should
already be set, i.e. TEXT or GRAPHICS 1 or GRAPHICS 2.
The address should be set in accordance to the mode chosen.

RELATED ROUTINES:
VCOLRT
VNAMET
VSATRT
VSPRST

Spec. 50-90020490

- set colour table base address
- set name table base address
- set sprite attribute table base address
- set sprite pattern table base address

Page 3 - 38 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMD8

FUNCTION:
Dump a string of bytes from the VRAM.

DESCRIPTION:
This routine is functionally the same as FASTD8 but are
safe in an interrupt environment <and also take longer).
This routine is used to dump a string of bytes from the
VRAM. The length of the data to be dumped is passed in
reg C and the memory address, in RAM, of the destination
of the data is passed in reg DE. The start address in
VRAM is passed in HL. This routine can be used on strings
up to 256 bytes in length.

PARAMETERS PASSED:
C Reg: Length of data block to be dumped

DE Reg: Start of destination area in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
HL Reg: Points one byte past end of source area

in VRAM
(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 15 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If more than 256 bytes are to be moved use the routine
VRAMDU.

RELATED ROUTINES:
VRAMDU - Video RAM dump
FASTD8 - Fast Video RAM dump (less than 256 bytes)
FASTDU - Fast Video RAM dump

Spec. 50-90020490 Page 3 - 39 June 8, 1984

•

•

•

•

•

•

BOS CALLS

ROUTINE NAME: VRAMDU

FUNCTION:
Dump a string of bytes from the VRAM.

DESCRIPTION:
This routine is functionally the same as FASTDU, but are
safe in an interrupt environment (and also take longer).
This routine is used to dump a string of bytes from the
VRAM. The length of the data to be dumped is passed in
reg BC and the memory address of the destination of the
data is passed in reg DE. The start address in VRAM is
passed in HL. Since 16 bit pointers are used, anywhere
from 0 to 16K of data may be transfered with this routine.

PARAMETERS PASSED:
BC Reg: Length of data block to be dumped
DE Reg: Start of destination area in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
HL Reg: Points one byte past end of source area in VRAM.

(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 16 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If a small string (less than 256 bytes) is to be dumped,
use the routine VRAMD8

RELATED ROUTINES:
VRAMD8
FASTD8
FASTDU

Spec. 50-90020490

- Video RAM dump (less than 256 bytes)
- Fast Video RAM dump (less than 256 bytes)
- Fast Video RAM dump

Page 3 - 40 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMLS

FUNCTION:
Write a string of bytes to the VRAM.

DESCRIPTION:
This routine is functionally the same as FASTL8 but are
safe in an interrupt environment (and also take longer).
This routine is used to write a string of bytes to the
VRAM. The length of the data to be written is passed in
reg C and the memory address of the source of the data is
DE. The start address in VRAM is passed in reg HL.

PARAMETERS PASSED:
C Reg: Length of data block to be read

DE Reg: Start of source area in RAM
HL Reg: Start of destination area in VRAM

PARAMETERS RETURNED:
HL Reg: Points one byte past end of destination area

in VRAM
(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 13 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If more than 256 bytes of data must be loaded into Video
RAM, use the routine VRAMLD.

RELATED ROUTINES:
VRAMLD
FASTL8
FASTLD

- load Video RAM
- quick load of Video RAM (less than 256 bytes)
- quick load of Video RAM

--
Spec. 50-90020490 Page 3 - 41 June 8, 1984

•

•

•

•

•

•

BOS CALLS

ROUTINE NAME: VRAMLD

FUNCTION:
Write a string of bytes to the VRAM.

DESCRIPTION:
This routine is functionally the same as FASTLD, but are
safe in an interrupt environment (and also take longer).
This routine is used to write a string of bytes to the
VRAM. The length of the data to be written is passed in
reg BC and the memory address of the source of the data is
passed in reg DE. The start address in VRAM is passed in
HL. Since 16 bit pointers are used, anywhere from 0 to 16K
of data may be transfered with this routine.

PARAMETERS PASSED:
BC Reg: Length of data block to be read
DE Reg: Start of source area in RAM
HL Reg: Start of destination area in VRAM

PARAMETERS RETURNED:
HL Reg: Points one byte past end of destination area

in VRAM
(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 14 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If a small string (less than 256 bytes) is to be loaded
use VRAML8.

RELATED ROUTINES:
VRAMD8
FASTDB
FASTDU

- Video RAM dump (less than 256 bytes)
- Fast Video RAM dump (less than 256 bytes)
- Fast Video RAM dump

--
Spec. 50-90020490 Page 3 - 42 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMRD

FUNCTION:
Read a single byte of data from TMS9918A VRAM

DESCRIPTION:
This routine is used to read a single byte of data from
TMS9918A VRAM. The address to be read is passed in reg BC,
the value of the VRAM at that location is returned in reg
A.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be read from

PARAMETERS RETURNED:
A Reg: Contents of VRAM at Location

REGISTERS USED:
A,F
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. OD - Re-entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:
- write one byte to Video RAM VRAMWR

FASTRD
FASTWR

- quick read of one byte to Video RAM
- quick write of one byte to Video RAM

Spec. 50-90020490 Page 3 - 43 June 8, 1984

•

•

•

•

•

•

BOS CALLS

ROUTINE NAME: VRAMWR

FUNCTION:
Write a single byte of data to TMS9918A VRAM

DESCRIPTION:
This routine is used to write a single byte of data from
TMS9918A VRAM The address to be written is passed in reg
BC. The data to be written is passed in Register E.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be written to
E Reg: Data to be written

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. OE - Re-entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:
- read one byte of Video RAM VRAMRD

FASTRD
FASTWR

-read one byte of Video RAM ••• fast
-write one byte of Video RAM ••• fast

Spec. 50-90020490 Page 3 - 44 June 8, 1984

BOS CALLS

ROUTINE NAME: VREGRD

FUNCTION:
Reads the TMS9918A video display register

DESCRIPTION:
This routine reads the TMS9918A video display
values, which are stored in RAM images. The
number to be written (0 to 7l is passed in reg c.
The following data may also be read:

register
register

8: VDP Status Register RAM Image (Updated Each Clock Interrupt
9: Current VDP Mode: 0 -text, 1 -Graphics I, 2 -Graphics II
A: Current Screen Width in Characters

The data is returned in register A

PARAMETERS PASSED:
C Reg: Register Number to be read

PARAMETERS RETURNED:
A Reg: Value of Register

REGISTERS USED:
A, BC, HL, Flags

0 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 0 - Re-entrant

COMMENTS AND WARNINGS:
The actual control registers of the video

write only. The IOS maintains an image of these
allowing the application to "read" the values
currently in the registers.

RELATED ROUTINES:

chip are
registers
that are

VREGWR - write to a register in the video chip

Spec. 50-90020490 Page 3 - 45 June 8, 1984

•

•

•

•

•

•

BOS CALLS

ROUTINE NAME: VREGWR

FUNCTION:
Writes the TMS9918A video display registers.

DESCRIPTION:
This routine writes the TMS9918A video display registers.
The register number to be written (0 to 7) is passed in reg
C and the data to be written is passed in reg E. Note that
since the TMS9918A registers are write-only, images of the
registers are kept in global memory where they may be read
if required.

PARAMETERS PASSED:
C Reg: Register Number to be written
E Reg: Data to be written into register

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 4 - Re-entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:
VREGRD - read a register in the Video chip

Spec. 50-90020490 Page 3 - 46 June 8, 1984

BOS CALLS

ROUTINE NAME: VSATRT

FUNCTION:
Set the sprite attributes table address in the TMS9918A.

DESCRIPTION:
This routine is used to set the sprite attributes table
address in the TMS9918A. The full sprite attributes table
address is passed in reg BC. This routine correctly writes
the address into the TMS9918A reg 5 and stores the full
sprite attributes table address in VATRIAD for use by other
routines.

PARAMETERS PASSED:
BC Reg: Base Address of Sprite ATTRIBUTES table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack

ROUTINE TYPE GLOBAL - BOS No. 9 - Re-entrant

COMMENTS AND WARNINGS:
This routine must be called when setting up the video for
GRAPHICS 1 or GRAPHICS 2 mode.

Spec. 50-90020490 Page 3 - 47 June 8, 1984

•

•

•

BOS CALLS

• ROUTINE NAME: VSETG1

FUNCTION:
Set video for graphics 1 mode

DESCRIPTION:
VSETG1 sets the
16*16 sprites,
VBLKOFF routine

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F

VDP for graphics 1 mode, blanked display,
1X magnification. The user must use the

to enable the display.

2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 26 - Re-entrant

COMMENTS AND WARNINGS:
This routine does not set base addresses of tables nor

• does it load pattern sets into Video RAM.

RELATED ROUTINES:
VSETG2 - set to GRAPHICS 2 mode
VSETTX - set to TEXT mode

• Spec. 50-90020490 Page 3 - 48 June 8, 1984

BOS CALLS

ROUTINE NAME: VSETG2

FUNCTION:
Set video for graphics 2 mode

DESCRIPTION:
VSETG2 sets the VDP for graphics 2 mode, blanked display,
16*16 sprites, lX magnification. The user must use the
VBLKOFF routine to enable the display.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 27 - Re-entrant

COMMENTS AND WARNINGS:
This routine does not set base addresses of tables nor
does it load pattern sets into Video RAM.

RELATED ROUTINES:
VSETGl
VSETTX

Spec. 50-90020490

- set to GRAPHICS 1 mode
- set to TEXT mode

Page 3 - 49 June a, 1984

•

•

•

•

•

•

BOS CALLS

ROUTINE NAME: VSETSP

FUNCTION:
Set sprite size and magnification

DESCRIPTION:
VSETSPA sets the sprite size and magnification. The sprite
size is passed in the C register (0=8*8, 1=16*16). The
sprite magnification is passed in the E register <O=lX,
1=2X). The user must first set the mode using one of the
above three routines.

PARAMETERS PASSED:
c = sprite size (0 = 8*8,1 = 16*16)
E = sprite magnification (0 =lx,l =2x)

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 28 - Re-entrant

COMMENTS AND WARNINGS:
Defaults for sprite size and magnification are set when
the mode (TEXT, GRAPHICS 1, or GRAPHICS 2) is set

Spec. 50-90020490 Page 3 - 50 June 8, 1984

BOS CALLS

ROUTINE NAME: VSETTX

FUNCTION:
Set video for text mode

DESCRIPTION:
VSETTXT sets the VDP for text mode, blanked display, 16*16
sprites, IX magnification. Please NOTE that sprites will
NOT appear in text mode even though the video chips'
registers are set up for sprites. The user must use the
VBLKOFF routine to enable the display.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 25 - Re-entrant

•

COMMENTS AND WARNINGS: •
Sprites can not be used in text mode, however when setting
the VDP register, sprite information must be provided.
This routine does not set base addresses of tables nor
does it load pattern sets into Video RAM.

RELATED ROUTINES:
VSETGI - set to GRAPHICS 1 mode
VSETG2 - set to GRAPHICS 2 mode

• Spec. 50-90020490 Page 3 - 51 June 8, 1984

BOS CALLS

4lt ROUTINE NAME: VSPRST

•

•

FUNCTION:
Set the sprite table address in the TMS9918A.

DESCRIPTION:
This routine is used to set the sprite table address in the
TMS9918A. The full sprite table address is passed in reg
BC. This routine correctly writes the adddress into the
TMS9918A reg 6 and stores the full sprite table address
into VSPRIAD for use by other routines.

PARAMETERS PASSED:
BC Reg: Base Address of Sprite PATTERN table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack

ROUTINE TYPE GLOBAL - BOS No. OA - Re-entrant

COMMENTS AND WARNINGS:
The mode in which the video chip is to work should
already be set.

RELATED ROUTINES:
VNAMET
VCOLRT
VPTRNT
VSATRT
VSPRST

Spec. 50-90020490

- set the name table base address
- set the colour table base address
- set the pattern table base address
- set the sprite attribute table base address
- set the sprite definition table base

address

Page 3 - 52 June 8, 1984

BOS CALLS

ROUTINE NAME: VSTATR

FUNCTION:
Reads the status register of the TMS9918A

DESCRIPTION:
This routine reads the status register of the TMS9918A and
returns the register contents in reg A. The status register
image VSTATUS is also updated. This routine may cause
clock interrupts to be lost as it executes, since it will
reset any pending interrupt.

PARAMETERS PASSED:
NONE

PARAMETERS RETURNED:
A Reg: VDP Status Byte

REGISTERS USED:
A,B,HL,C,F
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 5 - Re-entrant

COMMENTS AND WARNINGS:
This is a dangerous call! It may cause Clock Interrupts to
be lost. Unless absolutly necessary, it is best to get the
VDP Status by reading VSTATUS using VREGRD. VSTATUS will
be updated every 16 msec. by the clock ISR.

--
Spec. 50-90020490 Page 3 - 53 June 8, 1984

•

•

•

BOS CALLS

• ROUTINE NAME: VTABRD

•

•

FUNCTION:
Reads the current table base address pointers

DESCRIPTION:
This routine reads the current table base address
in the VDP from a RAM image area. The number
pointer to be read is passed in register c. These
are as follows:

0:
1:
2:
3:
4:

VNAMEAD
VCOLRAD
VPTRNAD
VATRIAD
VSPRIAD

PARAMETERS PASSED:

-Name Table Base Address
-Colour Table Base Address
-Pattern Table Base Address
-Sprite Attribute Table Base Address
-Sprite Pattern Table Base Address

C Reg: Register Number to be read

PARAMETERS RETURNED:
HL Reg: Register value

REGISTERS USED:
A, BC, DE, HL, Flags

0 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 1 - Re-entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:
VNAMET
VCOLRT
VPTRNT
VSATRT
VSPRST

- set the name table base address
- set the colour table base address
- set the pattern table base address
- set the sprite attribute table base
- set the sprite definition table

address

pointers
of the
numbers

address
base

Spec. 50-90020490 Page 3 - 54 June 8, 1984

BOS CALLS

ROUTINE NAME: XYLOC

FUNCTION:
Return name table address for any X-Y location on screen

DES CR IPT ION:
XYLOC returns the name table address in VRA!-1 for any X-Y
location on the screen. The X location is passed in the C
register, the Y location in the E register. The VRAH
address is returned in both HL and BC.

PARAMETERS PASSED:
C = X location (column} on screen
E = Y location (row}

PARAMETERS RETURNED:
BC = address in VRAI1
HL = address in VRAM

REGISTERS USED:
BC,DE,HL
Stack use = 4 bytes

ROUTINE TYPE GLOBAL - DOS No. lF - Re-entrant

Cm!HENTS AND WARNINGS:
NOTE: The screen is 32x24 patterns in the GRAPHICS modes
and 40x24 patterns in TEXT mode. If a standard T.V. set
is being used, the first and last column of patterns may
fall just outside the screen.

Spec. 50-90020490 Page 3 - 55 June 8, 1984

•

•

•

BOS CALLS

•

THIS PAGE LEFT INTENTIONALLY BLANK

•

• Spec. 50-90020490 Page 3 - 56 June 8, 1984

EXTENDED IOS

5.0 EXTENDED IOS

5.1 Introduction

The IOS is divided into 2 sections. The Kernel
contains the minimum set of IOS functions, while the
Extended IOS (XIOSJ contains the varied extensions.
This structuring of the IOS is done to leave as much
programming space as possible for applications, while
not reducing or limiting the functionality of the IOS.
As new features, such as I/O drivers for the varied
option boards, are added to the IOS, they will be
placed into the XIOS section thereby keeping the Kernel
size to a minimum.

The XIOS system is located in 16 different segments on
the wheel. These segments represent 16 tiering levels
for billing purposes - ie. the user of the application
must be authorized for the particular segment required
by the application program. Each segment is divided
into a number of modules (0 through 15 J • Each module
contains a related set of functions. XIOS modules are
loaded by the application by specifying which segment
the module is found in CO -> 15) and then within that

•

segment which XIOS module is desired (again a number •
between 0 and 15) • As they are loaded, these modules
will be relocated immediately below the !OS Kernel.
When an application no longer needs a module, it may
delete or unload that module. The Kernel software is
responsible for tracking which modules are currently
operative and which ones are not.

Locations 6 and 7 will always point to the base of the
total IOS, Kernel plus Extended. This will enable
applications to know how much space is available.
Applications normally place the stack based on the
value of locations 6 and 7.

Care must be taken that the stack is not overwritten
when loading XIOS modules. Ensure that your stack is
not at the top of user memory when requesting an XIOS
module - that is where the XIOS module will load to.

5.2 Extended IOS Module Handler

The XIOS module handler is responsible for loading,
unloading, linking and keeping track of XIOS modules.
This handler is included in the !OS Kernel.

Spec. 50-90020490 Page 4 - l June 8, 1984 •

• 5.2.1

•

EXTENDED !OS

Memory Structure for Loaded XIOS Modules

The structure for memory allocation of XIOS modules is
depicted in the following diagram:

FFFF ------------------------------------

!OS
KERNEL

BOTTOM OF KERNEL
D800 ------------------------------------

0100

0008
0005

XIOS MODULE 1

XIOS MODULE 2

BOTTOH OF LOv7EST XIOS

APPLICATION

JUNP TO BOTTOM OF KERNEL
JUMP TO BOTTOM OF LOWEST XIOS

STRUCTURE OF !OS WITH XIOS MODULES PRESENT

Spec. 50-90020490 Page 4 - 2 June 8, 1984

5.2.2

EXTENDED IOS

Loading XIOS Modules

XIOS modules will be loaded in one module at a time.
The module will be loaded in and relocated next to the
very bottom of the current IOS. Locations 6 and 7 will
be amended to reflect a bottom for IOS. Should
difficulties occur in loading and initializing the XIOS
module, the returned error code will indicate why
failure occurred.

The command to load an XIOS module is a DOS command with the
following format:

LOAD_XIOS_MODULE (call number 96Hl

Function: Load one XIOS module

Entry Parameters: Register C = 96H

Register E = XIOS Module ID
Where XIOS Module ID is one of:

00 - Basic BDOS and BIOS
01 - Basic BDOS, Extended BDOS and BIOS
13 - Multi-Window Screen Driver
14 - 80 Column Screen Driver

Exit Parameters: Register A = Status

Spec. 50-90020490

where Status is one of:
00 - Load was successful

Segment handler error codes:
-1 - XIOS Module was not loaded because

tier is not authorized
-2 - XIOS ~iodule was not loaded because

segment buffer overflowed
-3 - XIOS Module was not loaded because

adaptor did not respond
-4 - XIOS Module was not loaded because

an incorrectly formated packet
was received

-5 - XIOS Module was not loaded because
an undetermined communications
protocol error occurred

-6 - XIOS module was not loaded because
it was not located in the segment

XIOS Module error codes:
Codes -lOH to -70H are reserved for XIOS
Module to return after initializing.
These codes will be described in detail
in each respective XIOS Section.

Page 4 - 3 June 8, 1984

•

•

•

•

•

•

EXTENDED IOS

Each module is described in detail as to function and the type of
support it needs with regard to hardware and other XIOS modules,
in later sections of the APG •

Spec. 50-90020490 Page 4 - 4 June 8, 1984

EXTENDED !OS

5.2.3 Unloading XIOS Modules

XIOS modules will be unloaded or deleted one module at a
time. Only the module at the very bottom of the IOS can
be unloaded. {vhen this happens, locations 6 & 7 will be
amended to reflect the new bottom for the IOS, and
indicate that memory has been freed up. In order to
unload all XIOS modules, the application must unload
them one at a time, until the return code indicates that
no module was unloaded.

Note that when the application is terminated normally by
a jump to location 0 or via the EXIT key on the keyboard
(an IOS function), all resident XIOS modules are
unloaded by the IOS re-boot code. This ensures that any
hardware that may be "attached" to an XIOS module Ceg.
disk drives) is properly de-initialized <eg. drive motor
is turned off).

The command to unload an XIOS module is a DOS command with the
following format:

UNLOAD_XIOS_MODULE <call number 97Hl

Function: Unload one XIOS module

Entry Parameters: Register C = 97H

Exit Parameters: Register A = Status
where Status is one of:

00 - Unload was successful and
unloaded module number is found
in register L

-1 - There was no XIOS module to unload
XIOS Module error codes:

Codes -lOH to -70H are reserved for
XIOS Module to return after
de-initializing. These codes will be
described in detail in each respective
XIOS Section.

Register L = XIOS Module ID
where XIOS Module ID is one of:

00 - Basic BDOS and BIOS
01 - Basic BDOS, Extended BDOS and BIOS
13 - Multi-Window Screen Driver
14 - 80 Column Screen Driver

Each module is described in detail as to function and the type of
support it needs with regard to hardware and other XIOS modules,
in later sections of the APG.

Spec. 50-90020490 Page 4 - 5 June 8, 1984

•

•

•

EXTENDED lOS

~ 5.2.4 Resolving References in XIOS Modules

~

~

Different XIOS modules will require access to
structures and subroutines contained within other
modules or within the Kernel.

data
XIOS

DOS call number 99H provides ·the mechanism for resolving
references. This call returns the address of the global
variable requested. All XIOS modules containing global
variables or subroutines must trap and execute this DOS
call. Each global variable must be given a unique
reference number. These reference numbers will be
included in the respective section for the XIOS module,
further on in this specification.

The call has the following format:

RESOLVE_REFERENCE (call number 99H)

Function: To return the address of the requested global reference

Entry Parameters: Register C = 99H

Register E = XIOS Module ID
where XIOS Module ID is one of:

00 - Basic BOOS and BIOS
01 - Basic BOOS, Extended BOOS, and BIOS
13 - Multi-Window Screen Driver
14 - 80 Column Screen Driver
FF - !OS Kernel

Register D = Reference Number as defined for
each respective XIOS Module. This num
ber has the range from 00 to FFH.

Exit Parameters: Register A= Status
where Status is one of:

00 - search was successful with the
address being returned in Register
HL

-1 - XIOS Module was not found and no
address is being returned

-2 Reference number was not found and
no address is being returned

Register HL = Address of the global reference

~ --
Spec. 50-90020490 Page 4 - 6 June 8, 1984

XIOS - DISK HANDLING

5.3 DISK SYSTEM

5.3.1 Introduction

The floppy disk units are attached to the Nabu PC via an
interface card. The interface card is capable of supporting up to
two disk drives. Each drive can be single or double density,
single or double sided, full height or half height, 48 or 96 tpi.
The disk drive currently provided is a single sided double dens
ity half height unit with 48 tpi.

New diskettes must be formatted to a recognizable
The Nabu standard format is 40 tracks per s1ae, soft
with 5 sectors per track and 1024 bytes per sector. The
is able to read single or double density disks produced
systems on Xerox 820, Cromemco, Osborne, {KayproJ or IBM

PROGRAM RESPONSIBILTY

format.
sectored
software
by CP/M
PC's.

Storage of retrieval of data files are the responsibility of
the individual application programs. Creation or modification of
files must be handled, as well as intercepting and interpreting
error codes from the file subsystem.

The only independant responsibility the end user has is in
disk maintenance, i.e. format, backup, copy etc etc •• This res-

•

ponsibility is handled by the disk utility application programs •
as described in the disk utility manuals.

FILES AND DIRECTORY

The files stored on disk are CP/M version 3.0 files, stored
in a CP/M directory and all calls to the directory and file
handling routines are standard CP/M. The routines to do file
management are supplied by Digital Research Inc. and are normally
referred to as the BOOS. The BDOS interfaces to low level disk
access routines called the BIOS. Application routines should do
all disk access via the proper BDOS calls.

The Console Command Processor usually a part of the CP/M
operating system, does not exist in the cable environment and the
equivalent functions are handled via other routines.

DISK ERROR HANDLING

Errors detected by the BIOS or BDOS will be returned to the
calling program, rather than resulting in an error on the users
console. Application programs need to test the appropriate status
on return from a BDOS call.

Spec. 50-90020490 Page 5 - 1 June 8, 1984 •

•
XIOS - DISK HANDLING

WARNING

The disk routines use the same buffer area in IOS as the
segment handler. Therefore, before accessing the segment
handling routines in IOS while you have open disk files, it is
strongly recommended that you close all files, perform the
segment load(sJ then reset the disk system.

Programmers should reference the CP/M documentation directly
about the CP/M disk features and programming requirements. In
particular, the CP/M Plus User's guide -gives an overview of the
organization and access of CP/H files. The CP/M plus programmer's
guide gives detailed descriptions, especially sections:

2.1 Calling Conventions
2.3 BDOS File System
3. BDOS calls {refer only to file access calls)

Programmers should be aware that the disk files are handled by
the DRI supplied routines, and that any other CP/t-1 features have
been implemented by Nabu in a compatible form. Section 4.2 of
this guide deals with CP/M compatible calls, and contains a list
of all calls.

• CP/M Version 3.0

•

Version 3.0 of CP/M has several enhancements that will be of
value to programmers. The extensions included in the disk support
are the following:

Time and date stamping on files - refer to section 2.7.2 of
the CP/M user's guide and section 2.3.8 of the CP/M
programmer's guide.

Automatic diskette login - refer to section 2.3.11 of the
CPI~l programmer's guide.

End of file marking - refer to section 2.3.12 of the
CP/H programmer's guide.

Error trapping and return to program - see section 2.3.13 of
the CP/11 programmer's guide.

Haximum file size is now 32Hb per file.

The application programmer needs to set up only a
control block {File Control Block - FCBJ to access a file.
to section 2.3.3 of the CP/M programmer's guide •

single
Refer

Spec. 50-90020490 Page 5 - 2 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

5. 4 MULTI'-WINDOW SCREEN DRIVER

5.4.1 INTRODUCTION

This XIOS module will contain a complete set of routines
which form the multi-window screen driver. These
routines were formerly BOS routines contained within the
IOS Kernel.

5.4.2 OPERATIONAL REQUIREMENTS

This XIOS module will not require any other XIOS module
in order for it to function. It does however use BOS
calls from within the IOS Kernel to interface with the
video hardware.

5.4.3 MODULE SPECIFIC ERROR CODES

This XIOS module will not
specific to itself, when it
the module has finished
initialization.

return any error codes
has been loaded, and when
initialization or de-

5.4.4 MODULE INITIALIZATION

When this
procedure
following:

XIOS module is loaded, its
is executed. This procedure

initialization
will do the

1. Link into the lOS Kernel BOS routines as
required.

2. Disable the previous screen driver.
3. Set the video screen to text mode.
4. Fill the video screen with a blue background

and a blue foreground.
5. Create window tl with size 38 columns by 24

rows; the cursor will be a flashing underline
character.

6. Enable the video hardware to output to screen.
7. Enable the cursor to flash.

Windows 2, 3, 4, and 5 will be undefined after
initialization.

Spec. 50-90020490 Page 6 - 1 June 8, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

5.4.4 MODULE DE-INITIALIZATION

Prior to the module being physically removed from
memory, a "shut-down" or de-initialization procedure is
executed. This procedure will do the following:

1.
2.

Clear the screen by
Restore the Kernel
interrupt handler,
module" state.

filling with blanks.
routines such as the clock
to their "prior to XIOS

This procedure can not and will not restore the
context of the screen prior to the XIOS module
loaded.

total
being

5.4.5 DOS CALL INTERFACE

This module will be capable of decoding and executing
four DOS calls. The call numbers decoded are:

SF DEFINE WINDOW
99 RETURN GLOBAL ADDRESS OF BOS ROUTINE
A2 INPUT STATUS FROM VIDEO SCREEN WINDOW
A3 OUTPUT DATA TO VIDEO SCREEN WINDOW

DEFINING VIDEO SCREEN WINDOWS

Up to five windows may be defined. Upon initialization
window 1 is set up to be the full text screen. Windows
may be altered or removed with the following call:

DEFINE_WINDOW (call number SFHl

Function: used to define a screen window for use by
the VIDEO_SCREEN calls below

Entry Parameters: Register C = SF Hex
Register DE = Pointer to

WINDOW~DEFINITION_BLOCK

Exit Parameters: Register HL = Pointer to old
WINDOW_CONTROL_BLOCK

or
zero if no old WCB

exists

Cautions: This routine is not re-entrant •

Spec. 50-90020490 Page 6 - 2 June S, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

The window is defined via the following two data
structures:

WINDOW_DEFINITION_BLOCK:
DEVICE_LOCATION: BYTE1
WCB_POINTER: ADDRESS1

Where:
DEVICE_LOCATION contains the single byte
number of the window being defined. It has a
range of 1 to 5.
WCB_POINTER contains a two byte pointer to a
valid window control block. If this value is
zero, the window becomes undefined, and thus
the window is closed.

WINDOW_CONTROL_BLOCK:
TOP_LEFT_ADDRESS:
COLUMN_WIDTH:
ROW_DEPTH:
CURSOR_ TYPE:
CURSOR_PATTERN:
CURSOR_X_POS:
CURSOR_Y_POS:
TAB_MAP:

WORD1
BYTE1
BYTE1
BYTE1
BYTE1
BYTE;
BYTE1
ARRAY[!. .391 OF

BOOLEAN;
Where:

Spec. 50-90020490

TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:

TOP_LEFT_ADDRESS = row number * 40
+ column number

Where: the row number and column
number represent the top

This value
decimal

left corner of the window
has a range of 0 to 959

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24.

It is
deep.

Page 6 - 3 June 8, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

CURSOR_TYPE contains a one byte value. Two
bits are defined as follows:

bit 0 set indicates a visible cursor
exists

bit 0 clear indicates no visible cursor
exists

bit 7 set indicates the cursor is to
flash

bit 7 clear indicates the cursor is to
be steady

PATTERN_NAME contains a one byte value. It
is the ASCII character which is to be
the cursor shape. The default window
uses the underline character.

CURSOR_X_POS contains a one byte value. It
is the relative cursor column position
within the window. It has a range of 0
to COLUMN_WIDTH-1. It is usually set to
o.

CURSOR_Y_POS contains a one byte value. It
is the relative cursor row position
within the window. It has a range of 0
to ROW_DEPTH-1. It is usually set to 0.

TAB_MAP contains an array of 40 bits (5
bytes). These bits identify tab stops •
If a bit is set, then a tab stop exists
at that relative column number in the
window.

DEFINE_WINDOW initializes one of the five windows (1
to 5) which are associated with the Video Display
Physical Devices 1 to 5. If a window is already
associated with the device location being set up, then
the existing window is closed and a pointer to the
closed WINDOW_CONTROL_BLOCK is returned in the HL
Register. Otherwise 0000 is returned in the HL
Register. It should be noted that windows must not be
re-defined in both foreground and background tasks at
the same time because the routine is not re-entrant •

Spec. 50-90020490 Page 6 - 4 June a, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

RETURN GLOBAL ADDRESS OF BOS ROUTINE

The following BOS routines have globally known
points:

entry

Name Description Reference No.

WIN DO
CLOSEW
SETCU
GOTOX
PUTCH
UPSCR
DOWNS
LEFTS
RIGHT
FILLA
DUMBT

Open window
Close window
Set cursor parameters
Move cursor in window
Put character into window
Scroll window up one row
Scroll window down one row
Scroll window left one column
Scroll window right one column
Fill area of window
Use window as dumb terminal

1
2
3
4
5
6
7
8
9
10
11

See section 5.2.4 for complete details on using DOS
call 99H.

INPUT STATUS FROM VIDEO SCREEN WINDOW

I

In keeping with the standard for physical device
drivers, two entry points are provided for the Video 4lt
Screen Device Drivers. The first of these is as
follows:

VIDEO_SCREEN: DEVICE_READY (call number A2H}

Function: Returns a data ready indication for a
specified window

Entry Parameters: Register C = A2 Hex
Register E = Window Number

Where:
Window Number has a range

of 1 to 5.
Exit Parameters: Register A = Return Code

Where:

Spec. 50-90020490 Page 6 - 5

Return Code = 0 indicates
that the window is
undefined.

Return Code = non-zero
indicates that the
window is defined
and ready to accept
data.

June a, 1984
4lt

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

OUTPUT DATA TO VIDEO SCREEN WINDOW

The second of the screen drivers has the following
format:

VIDEO_SCREEN: SEND_DATA (call number A3Hl

Function: Writes a character to the specified window

Entry Parameters: Register C = A3 Hex
Register E = Window Number

Where:
Window Number has a range

of 1 to 5.
Register D = ASCII Character to be

sent to video screen

Exit Parameters: Register A = Return Code
Where:

Return Code = 0 indicates
that the window is
undefined and data
was not sent.

Return Code = non-zero
indicates that the
window is defined
and data was sent.

For a list of the control characters which are
accepted by this driver, see the section on BOS call
DUMBT •

Spec. 50-90020490 Page 6 - 6 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

5.4.7 BOS CALL INTERFACE

This XIOS module contains eleven low-level BOS tout~n~~
for using windows. Linkage to these routines is direct
with their addresses being resolved with DOS call 99H as
described in section 3.5.5.6.2

OPEN A WINDOW

ROUTINE NAME: WINDO

GLOBAL REFERENCE NUMBER: 1

FUNCTION: Open a window

ENTRY PARAMETERS: REGISTER BC = Pointer to a valid
WINDOW_CONTROL~BLOCK

Where:
WINDOW_CONTROL~BLOCK contains:

TOP_LEFT_ADDRESS: WORD;
COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;
CURSOR_TYPE: BYTE;
CURSOR_PATTERN: BYTE;
CURSOR_X._POS: BYTE;
CURSOR_Y_POS: BYTE;
TAB_MAP: ARRAY[!. .391 OF

BOOLEAN;
Where:

Spec. 50-90020490

TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:

TOP_LEFT_ADDRESS = row number * 40
+ column number

Where: the row number and column
number represent the top

This value
decimal

left corner of the window
has a range of 0 to 959

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24.

It is
deep.

Page 6 - 7 June 8, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

CURSOR_TYPE contains a one byte value. Two
bits are defined as follows:

bit 0 set indicates a visible cursor
exists

bit 0 clear indicates no visible cursor
exists

bit 7 set indicates the cursor is to
flash

bit 7 clear indicates the cursor is to
be steady

PATTERN_NAME contains a one byte value. It
is the ASCII character which is to be
the cursor shape. The default window
uses the underline character.

CURSOR_X_POS contains a one byte value. It
is the relative cursor column position
within the window. It has a range of 0
to COLUMN_WIDTH-1. It is usually set to
o.

CURSOR_Y_POS contains a one byte value. It
is the relative cursor row position
within the window. It has a range of 0
to ROW_DEPTH-1. It is usually set to 0.

TAB_MAP contains an array of 40 bits {5
bytes). These bits identify tab stops •
If a bit is set, then a tab stop exists
at that relative column number in the
window.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the Open was
successful

RETURN CODE = 0 indicates that
the Open failed due to it
being the sixth window or
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
6+ Bytes of stack used

This routine is used to open a window on the screen
and initialize a cursor in the window. It is passed a
properly set up WINDOW_CONTROL_BLOCK. A maximum of 5
windows may be defined concurrently. If the
WINDOW_CONTROL_BLOCK is not set up correctly or the
6th window is to be opened, the return code is zero •

Spec. 50-90020490 Page 6 - 8 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

CLOSE WINDOW

ROUTINE NAME: CLOSEW

GLOBAL REFERENCE NUMBER: 2

FUNCTION: Close an opened window

ENTRY PARAMETERS: REGISTER BC = Pointer to
WINDOW_CONTROL~BLOCK

to be closed
If BC = 0 then all previously
opened windows are closed

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 0 indicates that
WCB was not found in
table of open windows

RETURN CODE = 255 indicates
that the window was
successfully closed

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
4+ Bytes of stack used

This routine is used to close a cursor window when it
is no longer needed. A pointer to the
WINDOW_CONTROL_BLOCK is passed in register BC. The WCB
is removed from the list of active windows, and the
window cursor is turned off.

SET CURSOR PARAMETERS

ROUTINE NAME: SETCU

GLOBAL REFERENCE NUMBER: 3

FUNCTION: Set the cursor parameters

ENTRY PARAMETERS: REGISTER BC = Pointer to a working
Window Control Block

REGISTER D = CURSOR_TYPE
REGISTER E = PATTERN_NAME

--
Spec. 50-90020490 Page 6 - 9 June a, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

Where:
CURSOR_TYPE contains a one byte value. Two

bits are defined as follows:
bit 0 set indicates a visible cursor

exists
bit 0 clear indicates no visible cursor

exists
bit 7 set indicates the cursor is to

flash
bit 7 clear indicates the cursor is to

be steady
PATTERN_NAME contains a one byte value. It

is the ASCII character which is to be
the cursor shape. The default window
uses the underline character.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE =
WCB was
table of

RETURN CODE
that the

0 indicates that
not found in

open windows
= 255 indicates
change occurred.

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
6+ Bytes of stack used

This routine is used to alter the parameters of a
cursor in a cursor window which is already open. This
routine MUST be used to turn off and turn on cursor
flashing for windows.

MOVE CURSOR IN WINDOW

ROUTINE NAME: GOTOX

GLOBAL REFERENCE NUMBER: 4

FUNCTION: Move the cursor to new position

ENTRY PARAMETERS: REGISTER BC = Pointer to an opened
Window Control Block

REGISTER D = CURSOR_lLPOS
REGISTER E = CURSOR_Y_POS

Spec. 50-90020490 Page 6 - 10 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

Where: ~
CURSOR_X_POS contains a one byte value. It

is the relative cursor column position
within the window. It has a range of 0
to COLUMN_WIDTH-1. It is usually set to
0.

CURSOR_Y_POS contains a one byte value. It
is the relative cursor row position
within the window. It has a range of 0
to ROW_DEPTH-1. It is usually set to 0.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = D indicates that
the reposition failed due
to an incorrectly
specified window.

RETURN CODE = 255 indicates
that the reposition
occurred.

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
4+ Bytes of stack used

This routine is used to re-position the cursor in a
window. If the cursor is positioned outside the window
the return code will indicate failure.

PUT CHARACTER IN WINDOW

ROUTINE NAME: PUTCH

GLOBAL REFERENCE NUMBER: 5

FUNCTION: Put an ASCII character in the window

ENTRY PARAMETERS:

Spec. 50-90020490

REGISTER BC = Pointer to an opened
Window control block

REGISTER E = ASCII character with
range 20H to 7EH

Page 6 - 11 June 8, 1984

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE
write
failed

= 0 indicates that
to the window
due to the window

not being opened or the
Window Control Block
being incorrectly
specified.

RETURN CODE =
that the
window was

255 indicates
write to the
successful.

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
6+ Bytes of stack used

This routine will output a single character at the
current cursor position and advance the cursor. No
control characters are interpreted, any data passed to
the routine is assumed to be a character. The cursor
is advanced according to the WRAP Algorithm as
follows:

CURSOR.XPOS:=CURSOR.XPOS+l1
IF CURSOR.XPOS > (WINDOW.WIDTH - 1) THEN

BEGIN

END

CURSOR.XPOS:=01
CURSOR.YPOS:=CURSOR.YPOS+l1

ELSE IF CURSOR.XPOS < 0 THEN
BEGIN

CURSOR.XPOS:=WINDOW.WIDTH-11
CURSOR.YPOS:=CURSOR.YPOS-11

END
IF CURSOR.YPOS > (WINDOW.ROWDEPTH-1) THEN

BEGIN

END1

CURSOR.YPOS:=01
EXIT(WRAP_ALGORITHM)1

IF CURSOR.YPOS < 0 THEN
BEGIN

CURSOR.YPOS:=WINDOW.ROWDEPTH-11
EXIT(WRAP_ALGORITHM1

END1
EXIT(WRAP_ALGORITHM)1

Spec. 50-90020490 Page 6 - 12 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

SCROLL WINDOW UP ONE ROW

ROUTINE NAME: UPSCR

GLOBAL REFERENCE NUMBER: 6

FUNCTION: Scroll the window up one line or row

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK

Where:
WINDOW_CONTROL_BLOCK must contain valid

values for the following:
TOP_LEFT_ADDRESS: WORD;
COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;

Where:
TOP_LEFT_ADDRESS contains a two byte value.

This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40

+ column number
Where: the row number and column

number represent the top

This value
decimal

left corner of the window
has a range of 0 to 959

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24.

It is
deep.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

Spec. 50-90020490 Page 6 - 13 June 8, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window up one row and
replace the bottom row with blanks. Note that the area
being scrolled need not be an open window. A partial
WINDOW_CONTROL_BLOCK may be used to define the area to
be scrolled.

SCROLL WINDOW DOWN ONE ROW

ROUTINE NAME: DOWNS

GLOBAL REFERENCE NUMBER: 7

FUNCTION: Scroll the window down one line or row

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK

Where:
WINDOW_CONTROL_BLOCK must contain valid

values for the following:
TOP_LEFT_ADDRESS: WORD;
COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;

Where:

Spec. 50-90020490

TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:

TOP_LEFT_ADDRESS = row number * 40
+ column number

Where: the row number and column
number represent the top

This value
decimal

left corner of the window
has a range of 0 to 959

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24 •

It is
deep.

Page 6 - 14 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window down one row and
replace the top row with blanks. Note that the area
being scrolled need not be an open window. A partial
WINDOW_CONTROL_BLOCK may be used to define the area to
be scrolled.

SCROLL WINDOW LEFT ONE COLUMN

ROUTINE NAME: LEFTS

GLOBAL REFERENCE NUMBER: 8

FUNCTION: Scroll the window left one column

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK

Where:
WINDOW_CONTROL_BLOCK must contain valid

values for the following:
TOP_LEFT_ADDRESS: WORD1
COLUMN_WIDTH: BYTE1
ROW_DEPTH: BYTE1

Where:
TOP_LEFT_ADDRESS contains a two byte value.

Spec. 50-90020490

This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40

+ column number
Where: the row number and column

number represent the top
left corner of the window

This value has a range of 0 to 959
decimal

Page 6 - 15 June 8, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24.

It is
daap.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window left one
replace the last column with blanks. Note
area being scrolled need not be an open
partial WINDOW_CONTROL_BLOCK may be used to
area to be scrolled.

SCROLL WINDOW RIGHT ONE COLUMN

ROUTINE NAME: RIGHT

GLOBAL REFERENCE NUMBER: 9

column and
that the

window. A
define the

FUNCTION: Scroll the window right one column

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK

Where:
WINDOW_CONTROL_BLOCK must contain valid

values for the following:
TOP_LEFT_ADDRESS: WORD;
COLUMN_ WIDTH: BYTE;
ROW_DE PTH : BYTE;

Spec. 50-90020490 Page 6 - 16 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

Where:
TOP_LEFT_ADDRESS contains a two byte value.

This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40

+ column number
Where: the row number and column

number represent the top

This value
decimal

left corner of the window
has a range of 0 to 959

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24.

It is
deep.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window right one column and
replace the first column with blanks. Note that the
area being scrolled need not be an open window. A
partial WINDOW_CONTROL_BLOCK may be used to define the
area to be scrolled.

FILL AREA OF WINDOW

ROUTINE NAME: FILLA

GLOBAL REFERENCE NUMBER: 10

FUNCTION: Fill the entire area of a window

ENTRY PARAMETERS: REGISTER E = ASCII character
with range 20H to 7EH

REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK

--
Spec. 50-90020490 Page 6 - 17 June 8, 1984

•

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

Where:
WINDOW_CONTROL_BLOCK must contain valid

values for the following:
TOP LEFT ADDRESS: WORDI
COLUMN_WIDTH: BYTEI
ROW DEPTH: BYTE1

Where:
TOP LEFT ADDRESS contains a two byte value.

- This value is computed as follOWS!
TOP_LEFT_ADDRESS = row number * 40

+ column number
Where: the row number and column

number represent the top

This value
decimal

left corner of the window
has a range of 0 to 959

COLUMN_WIDTH contains a one byte value.
is the number of columns the window
wide. It has a range of 1 to 40.

It
is

ROW_DEPTH contains a one byte value.
the number of rows the window is
It has a range of 1 to 24.

It is
deep.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the fill was
successful

RETURN CODE = 0 indicates that
the fill failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will fill a rectangular area on the
screen with a particular character. The area being
filled need not be an open window. A partial
WINDOW_CONTROL_BLOCK may be used to specify the area
to be filled •

Spec. 50-90020490 Page 6 - 18 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

USE WINDOW AS DUMB TERMINAL
ROUTINE NAME: DUMBT

GLOBAL REFERENCE NUMBER: 11

FUNCTION: Use a window as a dumb terminal or glass
teletype

ENTRY PARAMETERS: REGISTER E = ASCII character
with range 0 to 7FH

REGISTER BC = Pointer to a complete
WINDOW_CONTROL_BLOCK

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the write was
successful

RETURN CODE = 0 indicates that
the window is not open.

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
6+ Bytes of stack used

This routine allows an opened window to be used as if
it were an ASCII terminal. It will handle control
characters: carriage return, line feed, delete,
backspace, form feed, and horizontal tabs. The
routine puts the character at the current cursor
position of an opened window. It will interpret the
control characters as follows:

LINE FEED: CONTROL J
If the cursor is on the bottom line of the window, the
window will scroll up one line and leave the bottom
line filled with SPACES and the cursor will drop
straight down into this blank line. If the cursor is
in the middle of the window, the cursor just drops
down one line.

CARRIAGE RETURN: CONTROL M
The cursor will move to the first position of the
current line.

Spec. 50-90020490 Page 6 - 19 June 8, 1984

I

•

•

•

•

•

XIOS - MULTI-WINDOW SCREEN DRIVER

BACKSPACE: CONTROL H
The cursor moves back one position.
in the top-left position of the
happens.

DELETE: 7FH

If the cursor is
window, nothing

The cursor backspaces one character and places a SPACE
over the character.

FORM FEED: CONTROL L
The cursor is reset to the top-left position of the
window and the window is filled with SPACES.

HORIZONTAL TAB: CONTROL I
The cursor is moved over to the next tab position of
the current line. If no tab position is found, the
cursor is placed at the start of the next line.

BELL: CONTROL G
A short tone will sound.

VERTICAL TAB: CONTROL K
The cursor moves up one line. If the cursor is on the
top-most line, nothing will happen •

HOME: CONTROL
The cursor is reset to the top-left position of the
window.

OTHER CONTROL CHARACTERS:
Nothing will happen •

Spec. 50-90020490 Page 6 - 20 June 8, 1984

XIOS - 80 COLUMN SCREEN DRIVER

5.5 80 COLUMN SCREEN DRIVER

5.5.1 INTRODUCTION

This XIOS module will COntain a COmplete Set Of [QUtin9S
which form the 80 column screen driver. This screen
driver will emulate a Lear Seigler ADM-3A type terminal
on a 36 column visual video screen. A list of the
control character implemented is specified in a later
section.

5.5.2 OPERATIONAL REQUIREMENTS

This XIOS module will not require any other XIOS module
in order for it to function. It does however use BOS
calls from within the lOS Kernel to interface with the
video hardware.

5.5.3 MODULE SPECIFIC ERROR CODES

This XIOS module will not
specific to itself, when it
the module has finished
initialization.

5.5.4 MODULE INITIALIZATION

return any error codes
has been loaded, and when
initialization or de-

When this
procedure
following:

XIOS module is loaded, its
is executed. This procedure

initialization
will do the

1. Link into the IOS Kernel BOS routines as
required.

2. Disable the previous screen driver.
3. Set the video screen to text mode.
4. Fill the video screen with a blue background

and a blue foreground.
5. Create a virtual screen with size 80 columns by

24 rows1 the cursor will be a flashing
underline character.

6. Create a visual "window" with size 36 columns
by 24 rows.

7. Enable the video hardware to output to screen.
B. Enable the cursor to flash.

--
Spec. 50-90020490 Page 7 - 1 June 8, 1984

•

•

•

XIOS - 80 COLUMN SCREEN DRIVER

~ 5.5.5 MODULE DE-INITIALIZATION

~

~

Prior to the module being physically removed from
memory, a "shut-down" or de-initialization procedure is
executed. This procedure will do the following:

1.
2.

Clear the screen by
Restore the Kernel
interrupt handler,
module" state.

filling with blanks.
routines such as the
to their "prior to

This procedure can not and will not restore the
context of the screen prior to the XIOS module
loaded.

5.5.6 DOS CALL INTERFACE

clock
XIOS

total
being

This module will be capable of decoding and executing
two DOS calls. The call numbers decoded are:

A2 INPUT STATUS FROM VIDEO SCREEN
A3 OUTPUT DATA TO VIDEO SCREEN

5.5.6.1 INPUT STATUS FROM VIDEO SCREEN WINDOW

In keeping with the standard for physical
drivers, two entry points are provided for the
Screen Device Drivers. The first of these
follows:

device
Video

is as

VIDEO_SCREEN: DEVICE_READY <call number A2Hl

Function: Returns a data ready indication for the
screen driver

Entry Parameters: Register C = A2 Hex

Exit Parameters: Register A = Return Code
Where:

Return Code = 0 indicates
that the video
device is busy

Return Code = non-zero
indicates that the
video device is
ready to accept
data.

--
Spec. 50-90020490 Page 7 - 2 June 8, 1984

XIOS - 80 COLUMN SCREEN DRIVER

5.5.6.2 OUTPUT DATA TO VIDEO SCREEN WINDOW

The second of the screen drivers has the following
format:

VIDEO_SCREEN: SEND_DATA (call number A3Hl

Function: Writes a character to the screen driver.

Entry Parameters: Register C = A3 Hex
Register D = ASCII Character to be

sent to video screen

Exit Parameters: None

The following is a list of the control characters
interpreted:

BELL: CONTROL G
A short tone will sound.

BACKSPACE: CONTROL H
The cursor moves back one position.
in the top-left position of the
happens.

LINE FEED: CONTROL J

If the cursor is
screen, nothing

If the cursor is on the bottom line of the screen, the
screen will scroll up one line and leave the bottom
line filled with SPACES and the cursor will drop
straight down into this blank line. If the cursor is
in the middle of the screen, the cursor just drops
down one line.

CURSOR UP: CONTROL K
The cursor moves up one line. If the cursor is on the
top-most line, nothing will happen.

CURSOR RIGHT: CONTROL L
The cursor moves right one column. If the cursor is
at the right most position on a line, a line feed
action will occur

CARRIAGE RETURN:
The cursor will
current line.

CONTROL M
move to the first position of the

--
Spec. 50-90020490 Page 7 - 3 June 8, 1984

•

•

•

•

•

•

XIOS - 80 COLUMN SCREEN DRIVER

CLEAR SCREEN: CONTROL Z
The cursor is reset to the top•lQft pogitiOft ~r th~
screen and the screen is filled with SPACES.

HOME: CONTROL A

The cursor is reset to the top-left position of the
screen.

DELETE: 7FH
The cursor backspaces one character and places a SPACE
over the character.

OTHER CONTROL CHARACTERS:
Nothing will happen •

Spec. 50-90020490 Page 7 - 4 June 8, 1984

XIOS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

5.6 CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

5.6.1

5.6.2

5.6.3

5.6.4

5.6.5

INTRODUCTION

This. XIOS module will contain a set of routines which
are compatible with the logical device drivers found in
CP/M 2.2. This is a subset of the CP/M 2.2 BDOS and
does not include the disk oriented functions. These
routines were formerly contained within the IOS Kernel.

OPERATIONAL REQUIREMENTS

This XIOS module may require other XIOS modules in order
for it to function. It does use DOS calls OAOH through
0A5H inclusively for interfacing to the screen, the
keyboard, and the printer. These DOS calls will be
found within the IOS KERNEL or XIOS modules. The user
must ensure that the functions for DOS calls OAOH to
0A5H exist in memory, prior to using the logical
drivers.

MODULE SPECIFIC ERROR CODES

This XIOS module will not
specific to itself, when it
the module has finished
initialization.

MODULE INITIALIZATION

return any error codes
has been loaded, and when
initialization or de-

When this
procedure
following:

XIOS module is loaded, its
is executed. This procedure

initialization
will do the

1. Resolve the required global references in the
IOS KERNEL.

2. Modify the jump address at location 1,2 in RAM
such that it points to the second entry in the
BIOS jump table Cas per CP/M convention).

MODULE DE-INITIALIZATION

Prior to the module being physically removed from
memory, a "shut-down" or de-initialization procedure is
executed. This procedure will do the following:

1. Replace the modified jump location at 1,2 in
RAM with that which was originally there.

--
Spec. 50-90020490 Page 8 - 1 June 8, 1984

•

•

•

•

5.6.6

XIOS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

DOS CALL INTERFACE

This module will be capable of decoding and executing
ten DOS calls. The call numbers decoded are:

00 SYSTEM RESET
01 CONSOLE INPUT
02 CONSOLE OUTPUT
03 READER INPUT
04 TAPE OUTPUT
OS LIST OUTPUT
06 DIRECT CONSOLE I/0
09 PRINT STRING
10 READ CONSOLE BUFFER
11 GET CONSOLE STATUS

SYSTEM_RESET (call number OOH)
-performs same function as a jump to location 0000 Hex
-entry parameters:

C Register: 00 Hex
-is not re-entrant

CONSOLE_INPUT (call number OlH)
-reads the next character from the logical console with

echo. The call does not return until a character is ready.
This call will only accept CP/M compatible ASCII
characters. If the "YES" key is hit, a •y• is returned. If
the "NO" key is hit, a "N" is returned. All other key
codes above 7FH are returned but not echoed to the screen.

-entry parameters:
C Register: 01 Hex

-Returned Values:
A Register: Character Input

-is not re-entrant

CONSOLE_OUTPUT (call number 02Hl
-outputs a character to the logical console. Since the
default physical console driver is DOS calls OA2H and OA3H,
consult the specification for DOS call OA3H for control
character interpretation.

-entry parameters:
C Register: 02 Hex
E Register: Character to be output

Spec. 50-90020490 Page 8 - 2 June 8, 1984

XIOS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

READER_INPUT (call number 03H)
-get a byte from the logical TAPE reader. Control will not

return to the calling program until the character has been
read. This call will only accept CP/M compatible ASCII
characters. If the "YES" key is hit, a •y• is returned. If
the "NO" key is hit, a "N" is returned. All other key
codes above 7FH are returned but not echoed to the screen.

-entry parameters:
C Register: 03 Hex

-returned value:
A Register: character read

-is not re-entrant

PUNCH_OUTPUT (call number 04H)
-output a byte to the logical TAPE punch. Since the default
physical console driver is DOS calls OA2H and OA3H, consult
the specification for DOS call 0A3H for control character
interpretation.

-entry parameters:
C Register: 04 Hex
E Register: character to be output

LIST_OUTPUT (call number OSH)
-output a character to the logical list device
-entry parameters:

C Register: 05 Hex
E Register: character to be output

DIRECT_CONSOLE_IO (call number 06H)
-provides unadorned I/O from/to the logical console. Upon
entry, the E register either contains an OFF Hex, denoting
a console input request, or a character to be output. If
the input value if OFF Hex, then the functions returns with
the A register set to 00 if no character is ready at the
logical console otherwise the A register is set to the
character value input from the logical console. This call
will only accept CP/M compatible ASCII characters. If the
"YES" key is hit, a •y• is returned. If the "NO" key is
hit, a "N" is returned. Since the default physical console
driver is DOS calls 0A2H and 0A3H, consult the
specification for DOS call 0A3H for control character
interpretation.

Spec. 50-90020490 Page 8 - 3 June 8, 1984

•

•

•

•

•

•

XIOS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

-entry parameters:
C Register: 06 Hex
E Register: FF Hex (input) or

character to be output
-returned value:

A Register: character of 00 Hex (input>
nothing if output

-is not re-entrant

PRINT_STRING (call number 09H)
-print a string to the logical console from a buffer. The
character string stored in memory at the location pointed
to by the DE register is sent to the logical console. A'$'
is used as a delimiter to end the print string. Since the
default physical console driver is DOS calls OA2H and OA3H,
consult the specification for DOS call OA3H for control
character interpretation.

-entry parameters:
C Register: 09 Hex
DE Register: pointer to string

READ_CONSOLE_BUFFER (call number OAH)
-read a line of edited logical console input to a buffer.

The input is stored in the memory buffer pointer to by the
DE register. If the buffer overflows console input is
terminated. The format of the buffer is:

MAX_BUF_SIZE:
NUMBER_OF_CHARACTERS_READ:

BYTE;
BYTE;

CHARACTER-BUFFER: ARRAY[l •• MAX_BUF~SIZE] BYTE;

The "GO" key (OD Hex) or CNTRL J (OA Hex> will terminate
the input line. This call will only accept CP/M compatible
ASCII characters. If the "YES" key is hit, a "Y" is
returned. If the "NO" key is hit, a "N" is returned. All
other key codes above 7FH are returned but not echoed to
the screen.

-entry parameters:
C Register: OA Hex
DE Register: Pointer to MAX BUF SIZE

(MAX~BUF_SIZE must be set as well)
-returned values:

Console Characters in Buffer
NUMBER_OF_CHARACTERS_READ set

-is not re-entrant

Spec. 50-90020490 Page 8 - 4 June 8, 1984

XIOS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

GET~CONSOLE_STATUS (call number OBH)
-check to see if character has been typed at logical console
-entry parameters:

C Register: OB Hex
-returned value:

A Register: 00 Hex -No character ready
FF Hex -Character is ready and waiting

-is not re-entrant

For more information on CP/M please refer
[10]. Also note some important information
concerning CP/M implementation and upgrading

Spec. 50-90020490 Page 8 - 5

to reference
in section 1
in the IOS.

June 8, 1984

•

•

•

XIOS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

•

THIS PAGE LEFT INTENTIONALLY BLANK

•

• Spec. 50-90020490 Page 8 - 6 June 8, 1984

APPENDICES

APPENDICES

APPENDIX A

Definitions and Abreviations

ASCII An American standard for assigning code numbers to
keyboard characters

BASIC A commonly used computer language on personal computers

BOOS Digital Research's Basic Diskette Operating System
This forms part of CP/M

BIOS Basic Input and Output Handlers

Boot ROM Read Only Memory which is immediately executed after a
NPC is powered up

BOS Basic Operating System - Low level routines

CATV Community Antenna Television System- It is now used to
denote any cable television system

CP/M Digital Research's Diskette Operating System - It is
the abreviation for control processor and monitor

CSA Canadian Standards Association

DOS General
however
System

abreviation for diskette operating
for the NPC it means Downloadable

system
Operating

HEAD-END Refers to the central minicomputer system that broad
casts the software.

I/F

I/0

IOBYTE

General abreviation for interface

General Abreviation for input and output

A memory location used by CP/M to indicate what physical
I/O is connected to which logical I/O

IOS Internal Operating Software for the NABU Personal
Computer

ISR General abreviation for Interrupt Service Routine

LED Light Emitting Diode used on front panel of NPC for
indicating partial status of the NPC

Spec. 50-90020490 Page 9 - 1 June 8, 1984

•

•

•

• NA

NNI

NPC

PIXEL

RM

APPENDICES

NABU Adaptor - It is the unit which interfaces the NPC
to a CATV cable system which broadcasts software and
data for use in a NPC. It was formerly called NNI

NABU Network Interface - It is the old name for NA.

NABU Personal Computer

The smallest addressable graphics unit on a TV screen.

Read and Write type Memory for computers

RF Modulator

ROM

SPRITE

That piece of electronic equipment which converts the
digital signals of the head-end minicomputer into ana
log signals for broadcasting.

Read Only type Memory for computers

A single-coloured, moveable, positionable graphics
entity with variable pixel definition and resolution.

SYM It is a special key on the NPC keyboard which can be
used to redefine the keyboard

• TMS-9918A The name for the video chip in the NPC

•

VDP Video display processor - for the NPC it is the TMS-
9918A

Spec. 50-90020490 Page 9 - 2 June a, 1984

I

APPENDICES

APPENDIX B

This is a summary of the complete set of current IOS functions.
For the CP/M calls and DOS calls, the number directly preceeding
each function is the value register C must contain prior to the
call. For the BOS calls the number is the value that the link
table must be initialized to in order to gain access to the
proper routine.

CP/M (Calls to location OOOSH)

00
01
02
03
04
OS
06
09
OA
OB
oc

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console IIO
Print String
Read Console Buffer
Get Console Status
Get Version Number

Resets NPC
Read data from console
Type data to console
Read data from paper tape
Punch data on paper tape
List data to printer
Unadorned console I/O
Print message in buffer
Read message in buffer
Return status of console
Not Implemented

Downloadable Operating Software (DOS) (Calls to location 0008H)

Segment Routines

80
82
83
84
87
88
96
97
99

Reset Device
Get Status
Set Status
Load Segment
SEG$CST Base Address
Directory Search
Load XIOS Module
Unload XIOS Module
Resolve Global Reference

I/O Service Routines

SA
AO
Al
A2
A3
A4
AS

I/O Router: Attach
Human Input: Device Ready
Human Input: Get Data
Video screen: Device Ready
Video screen: Send Data
Printer: Device Ready
Printer: Send Data

Reset logical device
Get adaptor status
Set adaptor status
Load segment from cable
Return control status block

Set phys dev to log dev
Keyboard ready
Get keyboard data
Screen ready
Send data to screen
Printer ready
Send printer data

--
Spec. S0-90020490 Page 9 - 3 June 8, 1984

'

•
l

•

APPENDICES

tit Multitasking Routines

•

•

BB
BC
BD
BE

Clock User: Task Attach
Clock User: Task Remove
Device user: Task Attach
Device User: Task Remove

Attach task to system elk
Remove task
Attach device to elk
Remove device from elk

Miscellaneous

90
91
92
93
94

Link BOS Routines
Set SYM key Table
Read Real Time Clock
Set Real Time Clock
Configuration

Set up linktable for SO~
Redefinition table for SYM

Return system configuration

Basic Operating Software (BOS) (Called via link table)

Video Routines

00 VREGRD
01 VTABRD
04 VREGWR
OS VSTATRD
06 VNAMEST
07 VCOLRST
08 VPTRNST
09 VATRIST
OA VSPRIST
OB VBLKON
OC VBLKOFF
OD VRAMRD
OE VRAMWR
OF FASTLB
10 FASTLD
11 FASTDB
12 FASTDU
13 VRAMLB
14 VRAMLD
15 VRAMDB
16 VRAMDU
17 SPMARK
18 SPMOVE
19 SPCOLR
lA SPNAME
lB RPATRN
lC LPATRN
lD CHADR
lE VFILL
lF XYLOC

Spec. 50-90020490

Reads TMS-9918A video display register
Reads current table base address ptrs
Writes video display register
Reads video status register
Sets the pattern name address
sets the colour table address
Sets the pattern table address
Sets the sprite attributes table addr
sets the sprite table address
Blanks the video display
Turns on the video display
Reads a single byte of VRAM
Writes a single byte of VRAM
Write a string (256 max) of bytes to VRAM
Write a string (16 K max) of bytes to VRAM
Read string of bytes (256 max) from VRAM
Read string of bytes (16 K max) from VRAM
Same as FASTLB but interrupt protected
Same as FASTLD but interrupt protected
Same as FASTDB but interrupt protected
Same as FASTDU but interrupt protected
Mark end of a sprite attributes table
Move a sprite on the video screen
Set the colour of a sprite
set pattern name assoc. with a sprite
Load pattern def'ns into screen table
Load pattern def'ns into VRAM
Return VRAM addr for a certain pattern
Fill block of VRAM with a character
Return name tab addr for any XY lac

Page 9 - 4 June 8, 1984

20 PUTPAT
21 GETPAT
22 SETMSG
23 PUTMSG
24 GETMSG
25 VSETTXT
26 VSETGl
27 VSETG2
28 VSETSPA
3A VMOVI
3B VMOVD
3C FASTRD
3D FASTWR

Audio Routines

35
36

AUDRD
AUDWR

APPENDICES

Put pattern at any XY loc
Get pattern from any XY loc
Set up screen message
Put a message on screen
Get a message from screen
Set video for text mode
Set video for Graphics 1 mode
Set video for Graphics 2 mode
Set sprite size and magnification
Move data in VRAM up quickly
Move data in VRAM down quickly
Unprotected single byte VRAM read
Unprotected single byte VRAM write

Read audio chip register
Write the audio chip register

Miscellaneous BOS Routines

02
03
29
37
38
39
3E

CRBEG
CREND
MUL88
CLKPRM
HOINIT
CREGWR
SETMSK

Spec. 50-90020490

Start of a critical region
End of a critical region
Multiply two eight bit values
Control real time processing
Initialize IOS
Write to the control port
Write hardware interrupt control register

Page 9 - 5 June 8, 1984

•

•

•

APPENDICES

• APPENDIX C

•

•

The following is a sample program to demonstrate the use of the
video display processsor and the audio generator. This program
assumes that the MBO assembler (copyright Microsoft) is used.

The program will place messages on the screen, move a red
circular or a blue square sprite around on the screen under the
control of a joystick and a clock attach routine.

·** I

.
I

PROGRAM NAME: DEMO.MAC

;--
;

DESCRIPTION: DEMONSTRATION PROGRAM TO INTRODUCE
THE 991BA VIDEO DISPLAY PROCESSOR, AUDIO

; GENERATOR and the IOS.

;
;**

.zao

.RADIX 10 ;USE BASE 10

;EXTERNAL FUNCTIONS
;THESE LABELS REFERENCE CODE OUTSIDE OF THE MAIN PROGRAM.

;EQUATES

EXTRN TCHAR
EXTRN SPRPAT

BLACK EQU 01
MGREEN EQU 0 2
WHITE EQU OFH
DBLUE EQU 04

;PATTERN DEFINITIONS
;SPRITE PATTERN DEFINITIONS

·*** I

Spec. 50-90020490 Page 9 - 6 June 8, 1984

APPENDICES

;MACRO DEFINITIONS • PCALL MACRO SUBR, PARMI, PARM2, PARM3
IFNB <PARMI>
LD BC, PARMI
END IF
IFNB <PARM2>
LD DE, PARM2
END IF
IFNB <PARM3>
LD HL, PARM3
END IF
CALL SUBR
ENDM

;
DEFMSG MACRO XPOS, YPOS, MSG

LOCAL END, START
DB XPOS
DB YPOS
DB END-START

START: DB MSG
END:

ENDM . ,
SETCOLR MACRO BACK,TEXT

IFB <TEXT> • PCALL VREGWR, 07, IOH+BACK
ELSE

PCALL VREGWR, 07, TEXT*IOH+BACK
END IF
ENDM

;
N.CLKAT MACRO TASKADR

LD DE,TASKADR
LD C,08BH
CALL NABUSYS
ENDM

;
N.CLKRV MACRO TASKADR

LD DE,TASKADR
LD C,08CH
CALL NABUSYS
ENDM

1
N.LINKIO MACRO IOSPTR

LD DE,IOSPTR
LD c,o9oa
CALL NABUSYS
ENDM

Spec. 50-90020490 Page 9 - 7 June 8, I984 •

•

•

•

N.DEVRDY

;
N.DEVIO

MACRO
LD
LD
CALL
ENDM

MACRO
IFNB

LD
LD

END IF
LD
LD
CALL
ENDM

APPENDICES

DEVICE,LOCATN
E,LOCATN
C,DEVICE*2+0AOH
NABUSYS

DEVICE, LOCATN, DATA
<DATA>
A, DATA
D,A

E,LOCATN
C,DEVICE*2+0A1H
NABUSYS

;***
;* DATA AREA *
;***

;TASK CONTROL BLOCK FOR END OF PROGRAM

TSKEND::
NEXT: DW 0

ENDINT: DB 15
ENDINIT: DB 5H

ENDADR: DW 1H

;LINKED LIST POINTER
;EXECUTE TASK EVERY 1/4 SEC
;WAIT 5/60 SEC BEFORE EXECUTION
;TASK ADDRESS

;TASK CONTROL BLOCK FOR SPRITE MOVEMENT

TSKMSP::
NEXT1: DW 1
SPINT: DB 1

SPINTIT: DB 1
SPRADR: DW 1

;NEXT TASK IN LINKED LIST
;EXECUTE TASK EVERY 1/60 OF A SECOND
;WAIT 1/60 OF A SEC BEFORE EXECUTION
;TASK ADDRESS

;DEFINE BYTES FOR VARIABLES

X: DB 1 ;X POSITION OF SPRITE
Y: DB 1 ;Y POSITION OF SPRITE

COLRR: DB 1 ;CURRENT COLOUR OF SPRITE 7=RED 8=CYAN
OLDIR: DB 1 ;OLD DIRECTION OF SPRITE
XFLAG: DB 1 ;SOUND ENABLE FOR VERT. MOTION 1=ENABLED
YFLAG: DB 1 ;SOUND ENABLE FOR HORIZ. MOTION
CFLAG: DB 1 ;COLOUR FLAG • PREVENTS RAPID COLOUR CHANGES

Spec. 50-90020490 Page 9 - 8 June 8, 1984

MSGl:
MSG2:
MSG3:
MSG4:
MSGS:

APPENDICES

;DEFINE ALL THE MESSAGES TO BE PRINTED

DEFMSG 9H,3, 1 WELCOME TO NABU 1

DEFMSG 3H,ll, 1 SAMPLE PROGRAM '
DEFMSG 3H,13, 1 PRESS C KEY TO CONTINUE 1

DEFMSG 3H 14, 1 TO JOYSTICK PORTION OF TEST 1

DEFMSG 6H 18, 1 PRESS ESC KEY TO STOP 1

•
;**
; * START OF EXECUTION *
·** ,

START:: LD SP, (0006)
N.LINKIO LNKTBti

;SET STACK POINTER AT TOP OF MEMORY
;SET UP IOS JUMP TABLE

·** ,
; * THIS BLOCK OF CODE INITIALIZES THE VIDEO *
;* CHIP REGISTERS, LOADS THE ASCII CHARACTER *
; * SET AND SETS UP THE COLOUR TABLE FOR *
; * WHITE LETTERS ON A BLUE BACKGROUND. *
·** ,

CALL VSETGl ;SET GRAPHIC! MODE
;SET PATTERN TABLE ADDRESS PCALL VPTRNST,O

PCALL VNAMEST,lCOOH
PCALL VATRIST,lFOOH
PCALL VCOLRST,2000H
PCALL VSPRIST,3800H
SETCOLR DBLUE,WHITE

;SET PATTERN NAME TABLE ADDRESS •
;SET SPRITE ATTRIBUTE TABLE ADDRESS
;SET COLOUR TABLE ADDRESS
;SET SPRITE GENERATOR TABLE ADDRESS
;WHITE LETTERS ON BLUE BACKGRND

;**
; * DISABLE THE SOUND ON THE AUDIO REGISTER *
;**

PCALL AUDIOWR,7,3FH ;SET CONTROL REGISTER TO ZERO

PCALL RPATRN,TCHAR ;LOAD ASCII SET

PCALL VRAML8,20H,CLR1,2000H ;LOAD COLOR TABLE WHITE ON BLUE

;**
; * THIS BLOCK OF CODE BLANKS THE SCREEN *
; * AND WRITES MESSAGES ON THE SCREEN. *
·** ,

PCALL VFILL,960,20H,lCOOH
CALL VBLKOFF

Spec. 50-90020490 Page 9 - 9

;FILL VIDEO SCREEN WITH BLANKS
;TURN THE SCREEN ON

June 8, 1984 •

•

•

APPENDICES

;PRINT MESSAGES TO SAY HELLO AND PROMPT FOR ESC KEY

PCALL PUTMSG,MSG1
PCALL PUTMSG,MSG2
PCALL PUTMSG,MSG3
PCALL PUTMSG,MSG4

·*** ,
. * ,
;*
·* ,
·* ,

THIS BLOCK POLLS FOR THE 'C' KEY BEFORE
CONTINUING. ENDD IS THEN ATTACHED TO THE
CLOCK ISR TO CHECK FOR 'ESC' KEY INDICATING
END OF DEMO.

*
*
*
* ;***

LOOP: LD E,OFFH
LD C,6
CALL 0005
CP I C'
JP NZ, LOOP

PCALL VFILL 960,20H,lCOOH
PCALL PUTMSG,MSG5
PCALL VRAML8,20H,CLR2,200DH
SETCOLR MGREEN,BLACK

LD HL,ENDD
LD (ENDADR),HL
N.CLKAT TSKEND

;LOOP UNTIL THE 'C' KEY-IS HIT

;LOAD COLOR TABLE BLACK ON GREEN

;***
1 * THIS BLOCK INITIALLY SETS UP SPRITE PATTERN *
;* AND INITIALLY PLACES A RED CIRCULAR SPRITE *
1 * ON THE SCREEN. *
•*** ,

;SET UP SPRITES
PCALL LPATRN,SPRPAT,3800H
PCALL SPNAME 0,0
PCALL SPMARK 1

LD A,6
LD (COLRR),A
PCALL SPCOLR O,(COLRR)
LD A,O
LD (OLDIR) ,A

Spec. 50-90020490 Page 9 - 10

;LOAD SPRITE PATTERN
;SPRITE O,PATTERN 0
;END OF SPRITE ATTRIBUTE

;SET SPRITE TO RED

;INITIALIZE OLDIR TO 0

June 8, 1984

LD A,30
LD (YJ ,A
LD A,40
LD (X) ,A

LD A,1

APPENDICES

LD (XFLAGJ ,A
LD (YFLAG) ,A

;SET INITIAL SPRITE
;POSITION TO 40,30

;TO PREVENT CONTINUOUS
;SOUND WHILE TRAVELLING ALONG
;HORIZ AND VERT CENTERS, ENABLE
;FLAGS

•
;**
;* THIS BLOCK ATTACHES SPRMOV TO THE CLOCK ISR TO HANDLE *
; * SPRITE MOVEMENT AND MAKING 1 DING 1 1 DONG 1 SOUNDS *
;**

LD HL,SPRMOV
LD (SPRADRJ,HL
N.CLKAT TSKMSP

INLOOP: JP INLOOP

;ATTACH SPRITE MOVE
;TO CLOCK

;INFINITE LOOP

;
·**~* I

ROUTINE NAME:SPRMOV • i

;--
FILE NAME: DEMO.MAC

DESCRIPTION:USED TO DETERMINE THE NEW SPRITE POSITION, TO PRODUCE
; SOUND. THIS ROUTINE IS ATTACHED TO THE CLOCK.

;
;
;

PARAMETERS PASSED: none

PARAMETERS RETURNED:none

REGISTERS CLOBBERED:REGISTER SAVED BY CLOCK

GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

; COMMENTS and WARNINGS:

Spec. 50-90020490 Page 9 - 11 June 8, 1984 •

•

•

•

APPENDICES

;**
;* THIS BLOCK OF CODE DETERMINES IF THE JOYSTICK *
1 * IS READY. IF DATA IS READY, THEN N. DEVIO *
; * OBTAINS THE NEW DATA IN THE ACCUMULATOR. *
·** I

SPRMOV::

CONT:

LD A,1
LD (CFLAG) ,A
N.DEVRDY 0,02
JP NZ ,CONT
LD A,(OLDIR)
JP MOV

N.DEVIO 0,02
LD COLDIR) ,A

;RESET FLAG

;CHECK IF JOYSTICK HAS DATA
;IF NEW DATA IS READY THEN GET IT
;ELSE USE OLD DIRECTION

;GET NEW DATA
;SAVE THE NEW DIRECTION

·*** I

;* THIS BLOCK OF CODE DETERMINES WHAT THE NEW DIRECTION IS. *
;* BITS ARE SET IN THE RETURN VALUE FROM N.DEVIO ACCORDING *
;* TO WHAT THE JOYSTICK POSITION IS. *
; * *
;* IF BIT 0 IS SET THEN MOVE LEFT *
;* IF BIT 1 IS SET THEN MOVE DOWN *
;* IF BIT 3 IS SET THEN MOVE RIGHT *
;* IF BIT 4 IS SET THEN MOVE UP *
;* IF BIT 5 IS SET THEN CHANGE THE SPRITE CLOUR AND PATTERN *
•*** I

MOV: SRA A
CALL C,LEFT
SRA A
CALL C,DOWN
SRA A
CALL C,RGHT
SRA A
CALL C,UPP
SRA A
CALL C , FIRE

;SHIFT THE BITS TO THE RIGHT
;AND CALL THE APPROPRIATE
;ROUTINE IF THE BIT IS SET

--
Spec. 50-90020490 Page 9 - 12 June 8, 1984

APPENDICES

r*** ...
r* THIS BLOCK OF CODE DETERMINES WHETHER THE SPRITE HAS CROSSED *
r* THE VERTICAL LINE. IF IT HAS MAKE THE DONG SOUND. *
r***

LD A, (X) ;CHECK IF SPRITE CROSSES VERT LINE
CP 115'
JP NZ ,NOSNDX ;IF NOT THEN SKIP VERT SOUND
LD A, (YFLAG)
CP 0 riS SPRITE STILL ON VERT LINE?
JP Z,NOSNDX rYES-SKIP VERT SOUND
LD A,O
LD (YFLAG) ,A rRESET FOR SOUND

;PRODUCE SOUND FOR CROSSING VERICAL LINE
PCALL AUDIOWR 0,120 ;SET TONE
PCALL AUDIOWR 7,62 ;ENABLE CHANNEL A
PCALL AUDIOWR 8,31 ;MAXIMUM AMPLITUDE ,ENABLE ENV.
PCALL AUDIOWR 12,56 ;SET UP ENVELOPE
PCALL AUDIOWR 13,0

·** ' r* THIS BLOCK OF CODE DETERMINES WHETHER THE SPRITE HAS CROSSED *
r * THE HORIZONTAL LINE. IF IT HAS MAKE THE DING SOUND. *
·** '

NOSNDX:

NOSND:

rCHECK FOR HORIZ.
LD A,(Y)

SOUND

CP 90
JP NZ,NOSND
LD A, (XFLAG)
CP 0
JP Z,NOSND
LD A,O
LD (XFLAGl,A

;PRODUCE SOUND FOR
PCALL AUDIOWR 0,32
PCALL AUDIOWR 7,62
PCALL AUDIOWR 8,31
PCALL AUDIOWR 12,56
PCALL AUDIOWR 13,0

;CROSS HORIZ LINE?
rNO- THEN NO SOUND

;SET FLAG

CROSSING HORIZ. LINE
;SELECT TONE
r ENABLE CHANNEL A
rMAX. AMP. ENABLE
r SET UP ENVELOPE

ENV.

PCALL SPMOVE O,(Y),(X) rMOVE SPRITE ON SCREEN
RET

--
Spec. 50-90020490 Page 9 - 13 June 8, 1984

•

•

•

•

•

APPENDICES

•** I .

; ROUTINE NAME:LEFT

;--
.
I

FILE NAME: DEMO.MAC

; DESCRIPTION: UPDATES THE SPRITE POSITION 1 PIXEL TO THE LEFT

; PARAMETERS PASSED: none
;

PARAMETERS RETURNED:none

; REGISTERS CLOBBERED:none

;

;
;

GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

LEFT: PUSH AF ;SAVE AF REGISTER
LD A,1
LD (YFLAG),A ;RESET FLAG FOR SOUND
LD A, (X)
DEC A ;UPDATE X POSTION
LD (X) ,A
JP NZ,LR
LD A ,250 ;IS SPRITE AT THE EDGE OF SCREEN
LD (X) ,A

LR: POP AF
RET

Spec. 50-90020490 Page 9 - 14 June 8, 1984

APPENDICES

·***~ ,

ROUTINE NAME:DOWN

;--
;
; . ,

FILE NAME: DEMO.MAC

DESCRIPTION:MOVES THE SPRITE'S POSITION 1 PIXEL DOWN
;

. ,

. ,

PARAMETERS PASSED: none

PARAMETERS RETURNED:none

; REGISTERS CLOBBERED:none

; GLOBALS ACCESSED: none
; . , GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

;

DOWN: PUSH AF
LD A,1
LD (XFLAG) ,A
LD A, (Y)
INC A
LD (Yl,A
CP 180
JP NZ ,RD
LD A ,0
LD (Y) ,A

RD: POP AF
RET

RGHT:

RR:

PUSH AF
LD A,1
LD (YFLAG) ,A
LD A, (X)
INC A
LD (X) ,A
CP 245
JP NZ ,RR
LD A ,0
LD (X) ,A
POP AF
RET

Spec. 50-90020490 Page 9 - 15 June 8, 1984

~

~

--

--

--

APPENDICES

;**

ROUTINE NAME:UPP
;

;--
FILE NAME: DEMO.MAC

DESCRIPTION:MOVES THE SPRITE ONE PIXEL UP

PARAMETERS PASSED: none
;
; PARAMETERS RETURNED:none .
' ; REGISTERS CLOBBERED:none .
' ; GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

UPP: PUSH AF
LD A,1
LD (XFLAG),A
LD A, (Y)
DEC A
LD (Y) ,A
JP NZ,UR
LD A,180
LD (Y),A

UR: POP AF
RET

Spec. 50-90020490 Page 9 - 16 June a, 1984

APPENDICES

;***Ait
;
;
; ROUTINE NAME:FIRE
• ,
;--
;
;
;

FILE NAME: DEMO.MAC

; DESCRIPTION: WHEN FIRE BUTTON IS DEPRESSED, A RED CIRCLULAR
; SPRITE IS TOGGLED TO A BLUE SQUARE OR BACK AGAIN.
;
;
; PARAMETERS PASSED: none
;
; PARAMETERS RETURNED:none
;
; REGISTERS CLOBBERED:none

; GLOBALS ACCESSED: none
;
; . ,
;
;
;

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

FIRE:

REDO:

PUSH AF
LD A, (CFLAG)
CP 0
JP Z,FIRER
LD A,O
LD (CFLAG) ,A
LD A , (COLRRl
CP 7
JP Z ,REDO
INC A
LD (COLRR),A
PCALL SPCOLR
PCALL SPNAME
JP FIRER
PCALL SPCOLR
DEC A

0, (COLRR)
0,5

1, (COLRR)

;HAS SPRITE BEEN CHANGED RECENTLY
;YES -THEN RETURN

;RESET FLAG

;IS IT RED
;YES- CHANGE SPRITE TO A SQUARE

;AND CHANGE THE COLOUR
;MAKE IT A CIRCLE
;GOTO RETURN
;CHANGE COLOUR TO BLUE

LD (COLRR),A
PCALL SPCOLR
PCALL SPNAME
POP AF

O,(COLRRl ;CHANGE IT TO BLUE
0,1 ;MAKE THE SPRITE A SQUARE

FIRER:
RET

Spec. 50-90020490 Page 9 - 17 June 8, 1984

•

•

APPENDICES

~ ;**

~

~

;
ROUTINE NAME:ENDD

;
;--

FILE NAME: DEMO.MAC

DESCRIPTION:DETERMINES WHETHER THE ESC HAS BEEN DEPRESSED
AND IF IT HAS REBOOT THE SYSTEM.

; PARAMETERS PASSED: none
;

;
;

; .
'
.
'

PARAMETERS RETURNED:none

REGISTERS CLOBBERED:none

GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

;POLL FOR ESCAPE KEY
ENDD: PUSH AF

N.DEVRDY 0,01
CP 0
JP Z,NOEND
N.DEVIO 0,01
CP 1BH
JP NZ ,NOEND
LD C,O
JP 0

NOEND: POP AF
RET

;IS THE KEYBOARD READY

;YES-THEN GET DATA ELSE RETURN
;GET DATA
;IS IT THE ESC KEY
;NO -RETURN
;YES REBOOT CPM

Spec. 50-90020490 Page 9 - 18 June 8, 1984

APPENDICES

; ************ *'************* ** ************* ********************* * ******** •
; * THIS IS THE DATA FOR THE COLOUR TABLE *
;***

CLRl:

CLR2:

.RADIX 16
DB OF4,0F4,0F4,0F4,0F4,0F4,0F4,0F4
DB OF4,0F4,0F4,0F4,0F4,0F4,0F4,0F4
DB 0F4,0F4,0F4,0F4,0F4,0F4,0F4,0F4
DB OF4,0F4,0F4,0F4,0F4,0F4,0F4,0F4

DB 012,012,012,012,012,012,012,012
DB 012,012,012,012,012,012,012,012 ;COLOR TABLE ENTRIES
DB 012,012,012,012,012,012,012,012
DB 012,012,012,012,012,012,012,012
END

;***
; The SPRPAT.MAC file
;***

;

.z8o
CSEG
.RADIX 2

SPRPAT::

;

;

DB 008H

DB OOOH,OOOH,OOlH,OOFH,OlFH,03FH,03FH,07FH,07FH
DB OOlH,07FH,03FH,03FH,OlFH,OOFH,003H,OOlH,OOOH
DB 002H,OOOH,080H,OCOH,OFOH,OF8H,OFCH,OFCH,OFEH
DB 003H,OFEH,OFCH,OFCH,OF8H,OFOH,OCOH,080H,000H
DB 004H,OFFH,080H,080H,080H,080H,080H,080H,080H
DB 005H,080H,080H,080H,080H,080H,080H,080H,OFFH
DB 006H,OFFH,001H,001H,001H,OOIH,001H,OOIH,OOIH
DB 007H,001H,001H,001H,001H,001H,001H,001H,OFFH

END

--
Spec. 50-90020490 Page 9 - 19 June 8, 1984

•

•

APPENDICES

4lt ;**
;

•

•

;
ROUTINE NAME: LNKTB

;--
;

FILE NAME: LINKTAB.MHO

DESCRIPTION:
LNKTB is a driver table used by the application to establish

; user access to IOS routines. The table must exist if
; any of the IOS routines are to be used. Before the routines

may be accessed, the table must be initialized.

;

;
;

;
;

The table consists of all the IOS routines associated with
VDP, windows and cursors, and attaching tasks to the
clock interrupt. To use the table, delete any entries which
are not called by your software. This leaves only the
routines accessed by your code.

After the unused entries are deleted, the table must be
assembled and the assembled version included in the
final link of the application.

AUTHOR:
DATE and ISSUE:
CATALOGUE ID:

PARAMETERS PASSED:

PARAMETERS RETURNED:

REGISTERS CLOBBERED:

GLOBALS ACCESSED:

GLOBALS WRITTEN:

COMMENTS and WARNINGS:

Trevor Pearce
August 4, 1982 Version 1.0
HCF - AS - 0051

none

none

none

all VIDEO, SCREEN and CURE entry points

all accessed globals are written during
initialization

--
Spec. 50-90020490 Page 9 - 20 June 8, 1984

APPENDICES

• z8o • .RADIX 10
LNKTB::

DB (TABEND-TABSTRTJ/3 ; Do not delete this line
;

TABSTRT: ; Do not delete this line
;

REGRD::
VREGRD:: DB OOH,O,O

;
VTABR::
VTABRD:: DB OlH,O,O

;
CRBEG: : DB 02H,O,O

;
CREND:: DB 03H,O,O

REGWR::
VREGWR:: DB 04H,O,O

;
STATR::
VSTATRD:: DB OSH,O,O .

I

NAMST::
VNAMEST:: DB 06H,O,O

; • COLST::
VCOLRST:: DB 07H,O,O .

I

PTRST::
VPTRNST:: DB 08H,O,O

;
ATRST::
VATRIST:: DB 09H,O,O

;
SPRST::
VSPRIST:: DB OAH,O,O

;
BLKON: :
VBLKON:: DB OBH,O,O

;

. etc • etc. etc.

TAB END: Do not delete this line
;

END

Spec. 50-90020490 Page 9 - 21 June 81 1984 •

